2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

131 - 140 of 145 results for: MS&E

MS&E 311: Optimization

Applications, theories, and algorithms for finite-dimensional linear and nonlinear optimization problems with continuous variables. Elements of convex analysis, first- and second-order optimality conditions, sensitivity and duality. Algorithms for unconstrained optimization, and linearly and nonlinearly constrained problems. Modern applications in communication, game theory, auction, and economics. Prerequisites: MATH 113, 115, or equivalent.

MS&E 317: Algorithms for Modern Data Models

We traditionally think of algorithms as running on data available in a single location, typically main memory. In many modern applications including web analytics, search and data mining, computational biology, finance, and scientific computing, the data is often too large to reside in a single location, is arriving incrementally over time, is noisy/uncertain, or all of the above. Paradigms such as map-reduce, streaming, sketching, Distributed Hash Tables, Bulk Synchronous Processing, and random walks have proved useful for these applications. This course will provide an introduction to the design and analysis of algorithms for these modern data models. Prerequisite: Algorithms at the level of CS 261.

MS&E 323: Stochastic Simulation

Emphasis is on the theoretical foundations of simulation methodology. Generation of uniform and non-uniform random variables. Discrete-event simulation and generalized semi-Markov processes. Output analysis (autoregressive, regenerative, spectral, and stationary times series methods). Variance reduction techniques (antithetic variables, common random numbers, control variables, discrete-time, conversion, importance sampling). Stochastic optimization (likelihood ratio method, perturbation analysis, stochastic approximation). Simulation in a parallel environment. Prerequisite: MS&E 221 or equivalent.

MS&E 332: Security and Risk in Computer Networks

Risk management of large scale computing and networking systems with respect to security, data integrity, performance collapse, and service disruption. Qualitative and analytical basis for assessment, modeling, control, and mitigation of network risks. Stochastic risk models. Contact process. Random fields on networks. Virus and worm propagation dynamics and containment. Denial of service attacks. Intruder detection technologies. Distributed network attacks and countermeasures. Disaster recovery networks. Network protection services and resource placement. Autonomic self-defending networks. Economics of risk management. Emphasis is on analytics and quantitative methods.

MS&E 336: Topics in Game Theory with Engineering Applications

Seminar. Recent research applying economic methods to engineering problems. Recent topics include: incentives in networked systems; mechanism design in engineered systems; and dynamics and learning in games. Prerequisites: mathematics at the level of MATH 115; game theory at the level of 246 or ECON 203; probability at the level of 220; optimization at the level of 211. May be repeated for credit.
| Repeatable for credit

MS&E 337: Information Networks

Network structure of the Internet and the web. Modeling, scale-free graphs, small-world phenomenon. Algorithmic implications in searching and inter-domain routing; the effect of structure on performance. Game theoretic issues, routing games, and network creation games. Security issues, vulnerability, and robustness. Prerequisite: basic probability and graph theory.

MS&E 348: Optimization of Uncertainty and Applications in Finance

How to make optimal decisions in the presence of uncertainty, solution techniques for large-scale systems resulting from decision problems under uncertainty, and applications in finance. Decision trees, utility, two-stage and multi-stage decision problems, approaches to stochastic programming, model formulation; large-scale systems, Benders and Dantzig-Wolfe decomposition, Monte Carlo sampling and variance reduction techniques, risk management, portfolio optimization, asset-liability management, mortgage finance. Projects involving the practical application of optimization under uncertainty to financial planning.

MS&E 349: Capital Deployment

Methods for efficiently allocating capital among alternatives, constructing business plans, determining the value of risky projects, and creating alternatives that enhance value. Prerequisites: 242, 342.

MS&E 355: Influence Diagrams and Probabilistics Networks

Network representations for reasoning under uncertainty: influence diagrams, belief networks, and Markov networks. Structuring and assessment of decision problems under uncertainty. Learning from evidence. Conditional independence and requisite information. Node reductions. Belief propagation and revision. Simulation. Linear-quadratic-Gaussian decision models and Kalman filters. Dynamic processes. Bayesian meta-analysis. Prerequisites: 220, 252, or equivalents, or consent of instructor.

MS&E 364: Multi-echelon Inventory Models

Theoretical treatment of control problems arising in inventory management, production, and distribution systems. Inventory control for single and multi-location systems. Emphasis is on operating characteristics, performance measures, and optimal operating and control policies. Dynamic programming and applications in inventory control. Prerequisite: STATS 217 or equivalent, linear programming.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints