2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

71 - 80 of 80 results for: CME

CME 325: Numerical Approximations of Partial Differential Equations in Theory and Practice

Finite volume and finite difference methods for initial boundary value problems in multiple space dimensions. Emphasis is on formulation of boundary conditions for the continuous and the discrete problems. Analysis of numerical methods with respect to stability, accuracy, and error behavior. Techniques of treating non-rectangular domains, and effects of non-regular grids.

CME 326: Numerical Methods for Initial Boundary Value Problems

Initial boundary value problems model many phenomena in engineering and science such as, fluid flow problems, wave propagation, fluid-structure interaction, conjugate heat transfer and financial mathematics. We discuss numerical techniques for such simulations and focus on the underlying principles and theoretical understanding. Emphasis is on stability, convergence and efficiency for methods applied to hyperbolic and parabolic initial boundary value problems.

CME 327: Numerical Methods for Stiff Problems

Focus is on analysis of numerical techniques for stiff ordinary differential equations, including those resulting from spatial discretization of partial differential equations. Topics include stiffness, convergence, stability, adaptive time stepping, implicit time-stepping methods (SDIRK, Rosenbrock), linear and nonlinear system solvers (Fixed Point, Newton, Multigrid, Krylov subspace methods) and preconditioning. Pre-requisites: CME200/ME300A or equivalent; or consent of instructor.

CME 328: Advanced Topics in Partial Differential Equations

Contents change each time and is taught as a topics course, most likely by a faculty member visiting from another institution. May be repeated for credit. Topic in 2012-13: numerical solution of time-dependent partial differential equations is a fundamental tool for modeling and prediction in many areas of science and engineering. In this course we explore the stability, accuracy, efficiency, and appropriateness of specialized temporal integration strategies for different classes of partial differential equations including stiff problems and fully implicit methods, operator splitting and semi-implicit methods, extrapolation methods, multirate time integration, multi-physics problems, symplectic integration, and temporal parallelism. Prerequisites: recommended CME303 and 306 or with instructor's consent.

CME 329: Top Ten Algorithms of the 20th Century (MATH 310)

A high-level survey course covering one algorithm per week: metropolis, simplex method, conjugate gradient, QR, quicksort, fast fourier transform, maxcut, fast multipole method, integer relation detection, and convex/semi-definite programming.

CME 342: Parallel Methods in Numerical Analysis

Emphasis is on techniques for obtaining maximum parallelism in numerical algorithms, especially those occurring when solving matrix problems, partial differential equations, and the subsequent mapping onto the computer. Implementation issues on parallel computers. Topics: parallel architecture, programming models (MPI, GPU Computing with CUDA ¿ quick review), matrix computations, FFT, fast multiple methods, domain decomposition, graph partitioning, discrete algorithms. Prerequisites: 302 or 200 ( ME 300A), 213 or equivalent, or consent of instructor. Recommended: differential equations and knowledge of a high-level programming language such as C or C++ (F90/95 also allowable).

CME 345: Model Reduction

Model reduction is an indispensable tool for computational-based design and optimization, statistical analysis, embedded computing, and real-time optimal control. This course presents the basic mathematical theory for projection-based model reduction. Topics include: notions of linear dynamical systems and projection; projection-based model reduction; error analysis; proper orthogonal decomposition; Hankel operator and balancing of a linear dynamical system; balanced truncation method: modal truncation and other reduction methods for linear oscillators; model reduction via moment matching methods based on Krylov subspaces; introduction to model reduction of parametric systems and notions of nonlinear model reduction. Course material is complemented by a balanced set of theoretical, algorithmic and Matlab computer programming assignments. Prerequisites: CME 200 or equivalent, CME 263 or equivalent and basic numerical methods for ODEs.

CME 358: Finite Element Method for Fluid Mechanics

Mathematical theory of the finite element method for incompressible flows; related computational algorithms and implementation details. Poisson equation; finite element method for simple elliptic problems; notions of mathematical analysis of non-coercive partial differential equations; the inf-sup or Babushka-Brezzi condition and its applications to the Stokes and Darcy problems; presentation of stable mixed finite element methods and corresponding algebraic solvers; stabilization approaches in the context of advection-diffusion equation; numerical solution of the incompressible Navier-Stokes equations by finite element method. Theoretical, computational, and MATLAB computer programming assignments. Prerequisites: foundation in multivariate calculus and ME 335A or equivalent.

CME 372: Applied Fourier Analysis and Elements of Modern Signal Processing (MATH 262)

Introduction to the mathematics of the Fourier transform and how it arises in a number of imaging problems. Mathematical topics include the Fourier transform, the Plancherel theorem, Fourier series, the Shannon sampling theorem, the discrete Fourier transform, and the spectral representation of stationary stochastic processes. Computational topics include fast Fourier transforms (FFT) and nonuniform FFTs. Applications include Fourier imaging (the theory of diffraction, computed tomography, and magnetic resonance imaging) and the theory of compressive sensing.

CME 520: Topics in Simulation of Human Physiology & Anatomical Systems (SURG 253)

Biweekly interdisciplinary lecture series on the development of computational tools for modeling and simulation of human physiological and anatomical systems. Lectures by instructors and guest speakers on topics such as surgical simulation, anatomical & surgical Modeling, neurological Systems, and biomedical models of human movement. Group discussions, team based assignments, and project work.nPrerequisite: Medical students, residents or fellows from school of medicine, and computationally oriented students with a strong interest to explore computational and mathematical methods related to the health sciences.
| Repeatable for credit (up to 99 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints