2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 34 results for: MATSCI ; Currently searching spring courses. You can expand your search to include all quarters

MATSCI 82N: Science of the Impossible

Imagine a world where cancer is cured with light, objects can be made invisible, and teleportation is allowed through space and time. The future once envisioned by science fiction writers is now becoming a reality, thanks to advances in materials science and engineering. This seminar will explore `impossible¿ technologies - those that have shaped our past and those that promise to revolutionize the future. Attention will be given to both the science and the societal impact of these technologies. We will begin by investigating breakthroughs from the 20th century that seemed impossible in the early 1900s, such as the invention of integrated circuits and the discovery of chemotherapy. We will then discuss the scientific breakthroughs that enabled modern `impossible¿ science, such as photodynamic cancer therapeutics, invisibility, and mind-reading through advanced brain imaging. Lastly, we will explore technologies currently perceived as completely impossible and brainstorm the breakthroughs needed to make such science fiction a reality. The course will include introductory lectures and in-depth conversations based on readings. Students will also be given the opportunity to lead class discussions on a relevant `impossible science¿ topic of their choosing.
Terms: Spr | Units: 3
Instructors: Dionne, J. (PI)

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit

MATSCI 152: Electronic Materials Engineering

Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Dionne, J. (PI)

MATSCI 154: Thermodynamics of Energy Conversions at the Nanoscale

The principles of thermodynamics applied to the conversion of energy between light, heat, electricity, and chemical bonds. Modifications to thermodynamic phenomena, such as phase equilibria, when the material dimension approaches the nanometer length scale.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci
Instructors: Chueh, W. (PI)

MATSCI 155: Nanomaterials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Clemens, B. (PI)

MATSCI 159Q: Japanese Companies and Japanese Society (ENGR 159Q)

Preference to sophomores. The structure of a Japanese company from the point of view of Japanese society. Visiting researchers from Japanese companies give presentations on their research enterprise. The Japanese research ethic. The home campus equivalent of a Kyoto SCTI course.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci
Instructors: Sinclair, R. (PI)

MATSCI 160: Nanomaterials Laboratory

Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and self-assembled monolayers. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Melosh, N. (PI)

MATSCI 161: Nanocharacterization Laboratory (MATSCI 171)

Nanocharaterization techniques, such as: optical and electron microscopy, x-ray photoelectron spectroscopy and atomic force microscopy, will be explained in class and used in lab to determine structure of materials and understand why they have certain properties. This WIM class includes instruction on writing, statistics, generating effective plots with curve fits, using databases to find information and giving oral scientific presentations. Prerequsite: ENGR 50 or equivalent. (75 min. lecture + 3 hr. lab most weeks.)
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: McGehee, M. (PI)

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA
Instructors: Reed, E. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints