2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

71 - 80 of 196 results for: all courses

CHEM 132: Synthesis Laboratory

Focus is on longer syntheses with an emphasis upon using metal catalysts. Emphasis will be on complete characterization of final products using chromatographic and spectroscopic methods. Concludes with an individual synthesis project. Prerequisites: 35, 130.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 134: Analytical Chemistry Laboratory

Classical analysis methods, statistical analyses, chromatography, and spectroscopy will be covered with an emphasis upon quantitative measurements and data analysis. WIM course with full lab reports and oral communication. Concludes with student-developed quantitative project. Prerequisite: Chem 35
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA, WAY-AQR

CHEM 137: Special Topics in Synthesis

The course covers the basic toolbox for construction of more complex structures for function, largely directed towards molecules of biological relevance. The focus will be the ability to perform structural changes efficiently in order to enable the design of the best structure for a function. The concepts of catalytic processes are at the heart of the how small molecule drug discovery is performed. Fundamentals of the pertinent catalytic processes are discussed. The inter-relationship of synthetic chemistry and pharmaceuticals is emphasized. See more at: http://library.stanford.edu/guides/chem-137-special-topics-organic-chemistry#sthash.vi9khNU5.dpuf. Prerequisite CHEM 35.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Trost, B. (PI)

CHEM 151: Inorganic Chemistry I

Theories of electronic structure, stereochemistry, and symmetry properties of inorganic molecules. Topics: ionic and covalent interactions, electron-deficient bonding, and molecular orbital theories. Emphasis is on the chemistry of the metallic elements. An introduction to the Gaussian program will be covered in the discussion sections, used for electronic calculations in the computer and problem set exercises. Prerequisites: 35. Recommended: 171.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 153: Inorganic Chemistry II

The theoretical aspects of inorganic chemistry. Group theory; many-electron atomic theory; molecular orbital theory emphasizing general concepts and group theory; ligand field theory; application of physical methods to predict the geometry, magnetism, and electronic spectra of transition metal complexes. Prerequisites: 151, 173.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Solomon, E. (PI)

CHEM 171: Physical Chemistry I

Laws of thermodynamics, properties of gases, phase transitions and phase equilibrium, chemical equilibrium, chemical kinetics, reaction rate, thermal motion and energy barriers, kinetic molecular models. The MATLAB programming language with hands-on experiences will be introduced in discussion sections and used for simulations of chemical systems. Prerequisites: CHEM 33; PHYS 41; either CME 100 or MATH 51.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

CHEM 173: Physical Chemistry II

Introduction to quantum chemistry: the basic principles of wave mechanics, the harmonic oscillator, the rigid rotator, infrared and microwave spectroscopy, the hydrogen atom, atomic structure, molecular structure, valence theory. Prerequisites: CHEM 171; CME 102, 104 or MATH 53; PHYSICS 41, 43.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Martinez, T. (PI)

CHEM 174: Electrochemical Measurements Lab (CHEM 274)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students assemble and use electrochemical cells including indicator, reference, working and counter electrodes, with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, potentiostats, galvanostats, and stationary and rotated disk electrodes. The later portion of the course will involve a student-generated project to experimentally characterize some electrochemical system. Prerequisites: 134, 171, MATH 51, PHYSICS 44 or equivalent.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

CHEM 175: Physical Chemistry III

Molecular theory of kinetics and statistical mechanics: transport and reactions in gases and liquids, ensembles and the Boltzmann distribution law, partition functions, molecular simulation, structure and dynamics of liquids. Diffusion and activation limited reactions, potential energy surfaces, collision theory, transition-state theory and Marcus theory of reaction rates. Prerequisites: 171, 173.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Markland, T. (PI)

CHEM 176: Spectroscopy Laboratory

Use of spectroscopic instrumentation to obtain familiarity with important types of spectrometers and spectroscopic method and to apply them to study molecular properties and physical chemical time-dependent processes. Spectrometers include electronic ultraviolet/visible absorption, fluorescence, Raman, Fourier transform infrared, and nuclear magnetic resonance. Prerequisite: 173.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints