2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

221 - 230 of 245 results for: all courses

PHYSICS 105: Intermediate Physics Laboratory I: Analog Electronics

Analog electronics including Ohm's law, passive circuits and transistor and op amp circuits, emphasizing practical circuit design skills to prepare undergraduates for laboratory research. Short design project. Minimal use of math and physics, no electronics experience assumed beyond introductory physics. Prerequisite: PHYSICS 43 or PHYSICS 63.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Fox, J. (PI)

PHYSICS 107: Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis

Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of PHYSICS 40 or PHYSICS 60 series, and PHYSICS 70 and PHYSICS 105. Recommended pre- or corequisites: PHYSICS 120 and 130. WIM
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Hollberg, L. (PI)

PHYSICS 108: Advanced Physics Laboratory: Project

Small student groups plan, design, build, and carry out a single experimental project in low-temperature physics. Prerequisites PHYSICS 105, PHYSICS 107.
Terms: Win, Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Hartnoll, S. (PI)

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 43 or PHYS 63; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111, MATH 131P or MATH 173. Recommended corequisite: PHYS 112.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Hogan, J. (PI)

PHYSICS 130: Quantum Mechanics I

The origins of quantum mechanics and wave mechanics. Schrödinger equation and solutions for one-dimensional systems. Commutation relations. Generalized uncertainty principle. Time-energy uncertainty principle. Separation of variables and solutions for three-dimensional systems; application to hydrogen atom. Spherically symmetric potentials and angular momentum eigenstates. Spin angular momentum. Addition of angular momentum. Prerequisites: PHYSICS 65 or PHYSICS 70 and PHYSICS 111 or MATH 131P or MATH 173. MATH 173 can be taken concurrently. Pre- or corequisites: PHYSICS 120.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Burchat, P. (PI)

PSYC 50Q: Brain Training: Hype or Help?

Focuses on primary literature to evaluate evidence supporting claims that concerted practice can lead to improvements in capacities such as working memory, speed of processing and IQ. Looks across lifespan from childhood and remediation of learning disabilities to elderly individuals and the potential for brain training to delay onset of dementia. Examines new research into brain training as treatment for psychiatric disorders, as well as neuroscience behind learning and memory. Considers ethical implications of these programs. Students participate in brain training and track and analyze progress.
Terms: not given this year | Units: 3 | UG Reqs: WAY-SI, WAY-SMA | Grading: Letter (ABCD/NP)

PSYC 83: Addictions in our World: From Physiology to Human Behavior

Addiction is a powerful brain-based behavioral disorder that interferes with many lives. The National Survey on Drug Use and Health has estimated 21.5 million Americans aged 12 and older are classified as having a substance use disorder, an extraordinary 8.1% of the population. The field of mental health is advancing the understanding of this disorder through research, education, innovation and policy guidance. This class aims to help students better understand the struggles of addiction in our world by discussing many components involved in the disease including: physiology, psychology, treatment options, and the societal implications of addiction.nnStudents will engage in thought-provoking between psychology, neuroscience, and society. They will develop the knowledge-base and framework to critically evaluate the science behind addiction and how to apply this knowledge to address the addiction epidemic in our world. As technology advances, many new types of addiction are emerging, cre more »
Addiction is a powerful brain-based behavioral disorder that interferes with many lives. The National Survey on Drug Use and Health has estimated 21.5 million Americans aged 12 and older are classified as having a substance use disorder, an extraordinary 8.1% of the population. The field of mental health is advancing the understanding of this disorder through research, education, innovation and policy guidance. This class aims to help students better understand the struggles of addiction in our world by discussing many components involved in the disease including: physiology, psychology, treatment options, and the societal implications of addiction.nnStudents will engage in thought-provoking between psychology, neuroscience, and society. They will develop the knowledge-base and framework to critically evaluate the science behind addiction and how to apply this knowledge to address the addiction epidemic in our world. As technology advances, many new types of addiction are emerging, creating an additional urgent need to discuss the implications this burgeoning problem. This highly interactive seminar aims to engage the students in critical thinking didactics, activities and discussions that shape their understanding of the complexity inherent to the issues surrounding addiction, and increase the student¿s ability to more critically assimilate and interrogate information.
Terms: Aut | Units: 3 | UG Reqs: WAY-SI, WAY-SMA | Grading: Medical Option (Med-Ltr-CR/NC)

PSYC 135: Sleep and Dreams (PSYC 235)

The course is designed to impart essential knowledge of the neuroscience of sleep and covers how sleep affects our daily lives-- both physical and mental functions of our well-being. The course covers the science of sleep, dreams, and the pathophysiology of highly prevalent sleep disorders such as sleep deprivation, biological rhythms, and focuses on the physiology of non-REM and REM sleep. Course content empowers students to make educated decisions concerning sleep and alertness for the rest of their lives and shapes students' attitudes about the importance of sleep. Learning about the science of sleep provides tangible reason to respect sleep as a member of what we term the triumvirate of health: good nutrition, physical fitness, and healthy sleep. Undergraduates must enroll in PSYC 135, while graduate students should enroll in PSYC 235
Terms: Win, Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Medical Option (Med-Ltr-CR/NC)

PSYCH 9N: Reading the Brain: the Scientific, Ethical, and Legal Implications of Brain Imaging

It's hard to pick up a newspaper without seeing a story that involves brain imaging, from research on psychological disorders to its use for lie detection or "neuromarketing". The methods are indeed very powerful, but many of the claims seen in the press are results of overly strong interpretations. In this course, you will learn to evaluate claims based on brain imaging research. We will also explore the deeper ethical and philosophical issues that arise from our ability to peer into our own brains in action. The course will start by discussing how to understand and interpret the findings of brain imaging research. We will discuss how new statistical methods provide the ability to accurately predict thoughts and behaviors from brain images. We will explore how this research has the potential to change our concepts of the self, personal responsibility and free will. We will also discuss the ethics of brain imaging, such as how the ability to detect thoughts relates to personal privacy and mental illness. Finally, we will discuss the legal implications of these techniques, such as their use in lie detection or as evidence against legal culpability.
Terms: not given this year | Units: 3 | UG Reqs: WAY-ER, WAY-SMA | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints