2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 37 results for: APPPHYS

APPPHYS 78Q: Tools of Nanotechnology

Preference to sophomores. Topics include: current and future applications of nanotechnology, nanofabrication tools, nanoscale characterization and manipulation tools, scanning probe microscopy (SPM), Stanford nanotechnology research examples, hands-on activities, research lab tours. Prerequisite: high school physics.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Beetz, T. (PI)

APPPHYS 79N: Energy Options for the 21st Century

Preference to freshmen. Choices for meeting the future energy needs of the U.S. and the world. Basic physics of energy sources, technologies that might be employed, and related public policy issues. Trade-offs and societal impacts of different energy sources. Policy options for making rational choices for a sustainable world energy economy.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

APPPHYS 207: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. RC and diode circuits. Transistors. Feedback and operational amplifiers. Active filters and circuits. Pulsed circuits, voltage regulators, and power circuits. Precision circuits, low-noise measurement, and noise reduction techniques. Circuit simulation tools. Analog signal processing techniques and modulation/demodulation. Principles of synchronous detection and applications of lock-in amplifiers. Common laboratory measurements and techniques illustrated via topical applications. Limited enrollment. Prerequisites: undergraduate device and circuit exposure.
Terms: Win | Units: 3
Instructors: Fox, J. (PI)

APPPHYS 208: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. Continuation of APPPHYS 207 with emphasis on applications of digital techniques. Combinatorial and synchronous digital circuits. Design using programmable logic. Analog/digital conversion. Microprocessors and real time programming, concepts and methods of digital signal processing techniques. Current lab interface protocols. Techniques commonly used for lab measurements. Development of student lab projects during the last three weeks. Limited enrollment. Prerequisites: undergraduate device and circuit exposure. Recommended: previous enrollment in APPPHYS 207.
Last offered: Spring 2009

APPPHYS 219: Solid State Physics and the Energy Challenge

Technology issues for a secure energy future; role of solid state physics in energy technologies. Topics include the physics principles behind future technologies related to solar energy and solar cells, solid state lighting, superconductivity, solid state fuel cells and batteries, electrical energy storage, materials under extreme condition, nanomaterials.
Terms: Win | Units: 3
Instructors: Shen, Z. (PI)

APPPHYS 227: Quantum Device Physics of Atomic and Semiconductor Systems

Concepts and constituent technologies of quantum information systems. Quantum cryptography: single photon and entangled photon-pair-based quantum key distributions, quantum teleportation, quantum repeater. Quantum computer: Deutsch-Josza algorithm, Grover algorithm, Shor algorithm, quantum simulation, quantum circuits. Quantum hardwares: atomic physics, nuclear magnetic resonance, spintronics and quantum optics.
Terms: Spr | Units: 3

APPPHYS 232: Advanced Imaging Lab in Biophysics (BIO 132, BIO 232, BIOPHYS 232, MCP 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, and optical trapping. Limited enrollment. Recommended: basic physics, Biology core or equivalent, and consent of instructor.
Terms: Spr | Units: 4

APPPHYS 270: Magnetism and Long Range Order in Solids

Cooperative effects in solids. Topics include the origin of magnetism in solids, crystal electric field effects and anisotropy, exchange, phase transitions and long-range order, ferromagnetism, antiferromagnetism, metamagnetism, density waves and superconductivity. Emphasis is on archetypal materials. Prerequisite: PHYSICS 172 or MATSCI 209, or equivalent introductory condensed matter physics course.
Terms: Aut | Units: 3
Instructors: Fisher, I. (PI)

APPPHYS 272: Solid State Physics I

The properties of solids. Theory of free electrons, classical and quantum. Crystal structure and methods of determination. Electron energy levels in a crystal: weak potential and tight-binding limits. Classification of solids: metals, semiconductors, and insulators. Types of bonding and cohesion in crystals. Lattice dynamics, phonon spectra, and thermal properties of harmonic crystals. Pre- or corequisites: PHYSICS 120 and 121; and PHYSICS 130 and 131, or equivalents.
Terms: Win | Units: 3
Instructors: Reis, D. (PI)

APPPHYS 273: Solid State Physics II

Electronic structure of solids. Electron dynamics and transport. Semiconductors and impurity states. Surfaces. Dielectric properties of insulators. Electron-electron, electron-phonon, and phonon-phonon interactions. Anharmonic effects in crystals. Electronic states in magnetic fields and the quantum Hall effect. Magnetism, superconductivity, and related many-particle phenomena. Prerequisite: 272.
Terms: Spr | Units: 3
Instructors: Kivelson, S. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints