2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

111 - 120 of 168 results for: all courses

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Zebker, H. (PI)

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 190: Near-Surface Geophysics

Introduction to geophysical methods that can be used for imaging and characterizing groundwater systems; modeling and interpretation of the data. This Cardinal Class will be structured around solving a problem currently faced by a community in the Central Valley of California: How to select a site that can be used to recharge the groundwater? Where is there sand and gravel? clay? Where will the water go? We will review data from the area and develop a plan for the acquisition of geophysical data to image sediment texture in the subsurface. Data will be acquired during a weekend field trip to the community. Each week includes two hours of lectures; plus one 1.5-hour lab that involves acquisition of field data, or computer modeling/analysis of datanPre-requisite: CME 100 or Math 51, or co-registration in either.n(Cardinal Course certified by the Haas Center)
Terms: not given this year, last offered Spring 2017 | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

LINGUIST 183: Programming and Algorithms for Natural Language Processing

Construction of computer programs for linguistic processes such as string search, morphological, syntactic, and semantic analysis and generation, and simple machine translation. Emphasis is on the algorithms that have proved most useful for solving such problems.
Terms: not given this year, last offered Winter 2015 | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATH 114: Introduction to Scientific Computing (CME 108)

Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floating-point arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments. Prerequisites: MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of CS 106A or higher).
Terms: Win, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

MATSCI 81N: Bioengineering Materials to Heal the Body

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

MATSCI 142: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators and metals and applications to semiconductor devices. Time-dependent perturbation theory and interaction of light with materials with applications to laser technology. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 157)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 143: Materials Structure and Characterization

Students will study the theory and application of characterization techniques used to examine the structure of materials at the nanoscale. Students will learn to classify the structure of materials such as semiconductors, ceramics, metals, and nanotubes according to the principles of crystallography. Methods used widely in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: E-50 or equivalent introductory materials science course. (Formerly 153)
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 145: Kinetics of Materials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces. Prerequisites: MatSci 144. (Formerly 155)
Terms: given next year | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints