2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 29 results for: ESS

ESS 111: Biology and Global Change (BIO 117, EARTHSYS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

ESS 132: Evolution of Earth Systems (EARTHSYS 132, EARTHSYS 232, ESS 232)

This course examines biogeochemical cycles and how they developed through the interaction between the atmosphere, hydrosphere, biosphere, and lithosphere. Emphasis is on the long-term carbon cycle and how it is connected to other biogeochemical cycles on Earth. The course consists of lectures, discussion of research papers, and quantitative modeling of biogeochemical cycles. Students produce a model on some aspect of the cycles discussed in this course. Grades based on class interaction, student presentations, and the modeling project.
Terms: Win | Units: 4

ESS 135: Community Leadership

Offered through Residential Education to residents of Castano House, Manzanita Park. Topics include: emotional intelligence, leadership styles, listening, facilitating meetings, group dynamics and motivation, finding purpose, fostering resilience. Students will lead discussions on personal development, relationships, risky behaviors, race, ethnicity, spirituality, integrity.
Terms: Aut, Win, Spr | Units: 1-2 | Repeatable 3 times (up to 6 units total)
Instructors: Jones, J. (PI)

ESS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR
Instructors: Arrigo, K. (PI)

ESS 146A: Atmosphere, Ocean, and Climate Dynamics: The Atmospheric Circulation (CEE 161I, CEE 261I, EARTHSYS 146A, EARTHSYS 246A, ESS 246A, GEOPHYS 146A, GEOPHYS 246A)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the atmospheric circulation. Topics include the global energy balance, the greenhouse effect, the vertical and meridional structure of the atmosphere, dry and moist convection, the equations of motion for the atmosphere and ocean, including the effects of rotation, and the poleward transport of heat by the large-scale atmospheric circulation and storm systems. Prerequisites: MATH 51 or CME100 and PHYSICS 41.
Terms: Win | Units: 3

ESS 148: Introduction to Physical Oceanography (CEE 162D, CEE 262D, EARTHSYS 164)

Formerly CEE 164. The dynamic basis of oceanography. Topics: physical environment; conservation equations for salt, heat, and momentum; geostrophic flows; wind-driven flows; the Gulf Stream; equatorial dynamics and ENSO; thermohaline circulation of the deep oceans; and tides. Prerequisite: PHYSICS 41 (formerly 53).
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: Fong, D. (PI)

ESS 158: Geomicrobiology (EARTHSYS 158, EARTHSYS 258, ESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Terms: Win | Units: 3
Instructors: Francis, C. (PI)

ESS 162: Remote Sensing of Land (EARTHSYS 142, EARTHSYS 242, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Win | Units: 4
Instructors: Lyons, E. (PI)

ESS 163: Demography and Life History Theory (ESS 363)

Life history theory is the branch of evolutionary biology that attempts to understand patterns of investment in growth, reproduction, and survival across the life cycle. It is the theory that explains the major transitions that mark individual organisms' life cycles from conception to death. In this class, we will focus on the central themes of life history theory and how they relate to specific problems of the human life cycle. In addition to the classic questions of life history theory (e.g., evolution of reproductive effort, size vs. quality, etc.), we will discuss some peculiar issues that relate specifically to humans. In particular, we will explore the intersection of life history theory and more classical economic approaches to decision theory and rational choice. This will include an exploration of the evolution of economic transfers and their implications for demographic transitions, ecological resilience, and the consumption of natural resources. This discussion will explore how an understanding of life history theory might help in promoting investments in future welfare or developing policies that promote sustainability.
Terms: Win | Units: 5 | UG Reqs: GER:DB-SocSci
Instructors: Jones, J. (PI)

ESS 212: Measurements in Earth Systems

Preference will be given to ESS first-year grad students. Techniques to track biological, chemical, and physical processes operating across the San Francisquito Creek watershed, encompassing upland, aquatic, estuarine, and marine environments. Topics include gas and water flux measurement, assessment of microbiological communities, determination of biological productivity, isotopic analysis, soil and water chemistry determination, and identification of rock strata and weathering processes.
Terms: Win | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints