2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

231 - 240 of 297 results for: ME

ME 260: Fuel Cell Science and Technology

Emphasis on proton exchange membrane (PEM) and solid oxide fuel cells (SOFC), and principles of electrochemical energy conversion. Topics in materials science, thermodynamics, and fluid mechanics. Prerequisites: MATH 43, PHYSICS 55, and ENGR 30 or ME 140, or equivalents.

ME 264: d.science: Design for Science

Where does design fit into scientific research? In this class, we will design for how data are collected, how data are communicated, and how to apply scientific insights to community-based projects. This year's projects are inspired by the Citizen Science movement and The Year of the Bay. We will use human-centered design methods to understand the needs of bay area citizens through hands-on data collection, public data exploration and collaboration with local industry, government and research partners.nWith guest lectures from the design and science community, research mentors, and skills workshops, you will develop an actionable understanding of the challenges of collecting good data, the complexities of creating engaging stories with quantitative data, and the challenges of balancing insights from both human-centered design research and scientific research. One of the three class projects will involve visualizing and mapping big data. No prior programming or statistics experience required.nEnrollment limited to 24. This course is open to graduate students from all schools and departments. Apply the first day of class.
| Repeatable 2 times (up to 8 units total)

ME 280: Skeletal Development and Evolution (BIOE 280)

The mechanobiology of skeletal growth, adaptation, regeneration, and aging is considered from developmental and evolutionary perspectives. Emphasis is on the interactions between mechanical and chemical factors in the regulation of connective tissue biology. Prerequisites: BIO 42, and ME 80 or BIOE 42.

ME 284B: Cardiovascular Bioengineering (BIOE 284B)

Continuation of ME/ BIOE 284A. Integrative cardiovascular physiology, blood fluid mechanics, and transport in the microcirculation. Sensing, feedback, and control of the circulation. Overview of congenital and adult cardiovascular disease, diagnostic methods, and treatment strategies. Engineering principles to evaluate the performance of cardiovascular devices and the efficacy of treatment strategies.

ME 287: Mechanics of Biological Tissues

Introduction to the mechanical behaviors of biological tissues in health and disease. Overview of experimental approaches to evaluating tissue properties and mathematical constitutive models. Elastic behaviors of hard tissues, nonlinear elastic and viscoelastic models for soft tissues.

ME 287L: Mechanics of Biological Tissues Lab

The Mechanics of Biological Tissues Lab is the optional lab component for students taking ME287 Mechanics of Biological Tissues.

ME 289A: Interactive Art / Performance Design (TAPS 289A)

This class is for those who want the experience of designing and creating interactive art and performance pieces for public audiences, using design thinking as the method, and supported by guest speakers, artist studio visits and needfinding trips to music festivals, museums and performances.nnDrawing on the fields of design, art, performance, and engineering, each student will ideate, design, plan and lead a team to build an interactive art and/or performance piece to be showcased to audience of 5000 at the Frost Music and Art Festival held on the Stanford campus on May 17th 2014. Projects can range from interactive art to unconventional set design, and from site-specific sculpture to immersive performance.nnThis is a two-quarter long commitment during which students will first learn the design, planning, story boarding, budgeting, engineering, proposal creation and concept pitching of projects for applying for grants and presenting to funders. The second quarter will concentrate on prototyping, maquette making, testing, team forming, project management, creative leadership, construction, site installation and documentation.nPart one of a two course series: ME 289A&B.

ME 289B: Interactive Art / Performance Creation (TAPS 289B)

This class is the continuation of ME289A where students experience the designing and creating of interactive art and performance pieces for public audiences, using design thinking as the method, and supported by guest speakers, artist studio visits and needfinding trips to music festivals, museums and performances.nnDrawing on the fields of design, art, performance, and engineering, each student will ideate, design, plan and lead a team to build an interactive art and/or performance piece to be showcased to audience of 5000 at the Frost Music and Art Festival held on the Stanford campus on May 17th 2014. Projects can range from interactive art to unconventional set design, and from site-specific sculpture to immersive performance.nnDuring this second quarter students will concentrate on prototyping, maquette making, testing, team forming, project management, creative leadership, construction, site installation and documentation.nPart two of a two course series : ME 289A&B.

ME 290: GIVE BIG OR GO HOME

When individuals or organizations attempt to solve social problems by giving money, they often overlook the people at the center of the situation. The bigger the problem, the more removed the donors or funding institutions become from the human experience. You will learn how to use human centered design to shape your giving, while also considering the roles of larger systems. Students will learn design thinking methods, how to conceptualize a system in which you want to make a difference, and creative ways to think about financing change.

ME 294L: Medical Device Design Lab

In collaboration with the School of Medicine. This is the lab portion of ME294, which must be taken concurrently. Introduction to medical device design for undergraduate and graduate engineering students. Design, prototyping and labs. Medical device environments may include hands-on device testing; and field trips to operating rooms and local device companies. Prerequisite: 203.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints