2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

6281 - 6290 of 9648 results for: ...

ME 348: Experimental Stress Analysis

Theory and applications of photoelasticity, strain gages, and holographic interferometry. Comparison of test results with theoretical predictions of stress and strain. Other methods of stress and strain determination (optical fiber strain sensors, thermoelasticity, Moire, residual stress determination).
Terms: Spr | Units: 3
Instructors: Nelson, D. (PI)

ME 349: Variational Methods in Elasticity and Plate Theory

An introduction to variational calculus methods and their applications to the theories of elasticity and plates.
Terms: Spr | Units: 3
Instructors: Barnett, D. (PI)

ME 351A: Fluid Mechanics

Exact and approximate analysis of fluid flow covering kinematics, global and differential equations of mass, momentum, and energy conservation. Forces and stresses in fluids. Euler¿s equations and the Bernoulli theorem applied to inviscid flows. Vorticity dynamics. Topics in irrotational flow: stream function and velocity potential for exact and approximate solutions; superposition of solutions; complex potential function; circulation and lift. Some boundary layer concepts.
Terms: Aut | Units: 3

ME 351B: Fluid Mechanics

Laminar viscous fluid flow. Governing equations, boundary conditions, and constitutive laws. Exact solutions for parallel flows. Creeping flow limit, lubrication theory, and boundary layer theory including free-shear layers and approximate methods of solution; boundary layer separation. Introduction to stability theory and transition to turbulence, and turbulent boundary layers. Prerequisite: 351A.
Terms: Win | Units: 3
Instructors: Eaton, J. (PI)

ME 352B: Fundamentals of Heat Conduction

Physical description of heat conduction in solids, liquids, and gases. The heat diffusion equation and its solution using analytical and numerical techniques. Data and microscopic models for the thermal conductivity of solids, liquids, and gases, and for the thermal resistance at solid-solid and solid-liquid boundaries. Introduction to the kinetic theory of heat transport, focusing on applications for composite materials, semiconductor devices, micromachined sensors and actuators, and rarefied gases. Prerequisite: consent of instructor.
Terms: Win | Units: 3
Instructors: Goodson, K. (PI)

ME 352C: Convective Heat Transfer

Prediction of heat and mass transfer rates based on analytical and numerical solutions of the governing partial differential equations. Heat transfer in fully developed pipe and channel flow, pipe entrance flow, laminar boundary layers, and turbulent boundary layers. Superposition methods for handling non-uniform wall boundary conditions. Approximate models for turbulent flows. Comparison of exact and approximate analyses to modern experimental results. General introduction to heat transfer in complex flows. Prerequisite: 351B or equivalent.
Terms: Spr, Sum | Units: 3
Instructors: Eaton, J. (PI)

ME 354: Experimental Methods in Fluid Mechanics

Experimental methods associated with the interfacing of laboratory instruments, experimental control, sampling strategies, data analysis, and introductory image processing. Instrumentation including point-wise anemometers and particle image tracking systems. Lab. Prerequisites: previous experience with computer programming and consent of instructor. Limited enrollment.
Terms: Aut | Units: 4
Instructors: Santiago, J. (PI)

ME 357: Turbine and Internal Combustion Engines (ME 257)

Principles of design analysis for aircraft gas turbines and automotive piston engines. Analysis for aircraft engines performed for Airbus A380 type aircraft. Design parameters determined considering aircraft aerodynamics, gas turbine thermodynamics, compressible flow physics, and material limitations. Additional topics include characteristics of main engine components, off-design analysis, and component matching. Performance of automotive piston engines including novel engine concepts in terms of engine thermodynamics, intake and exhaust flows, and in-cylinder flow.
Terms: Win | Units: 3

ME 358: Heat Transfer in Microdevices

Application-driven introduction to the thermal design of electronic circuits, sensors, and actuators that have dimensions comparable to or smaller than one micrometer. The impact of thin-layer boundaries on thermal conduction and radiation. Convection in microchannels and microscopic heat pipes. Thermal property measurements for microdevices. Emphasis is on Si and GaAs semiconductor devices and layers of unusual, technically-promising materials such as chemical-vapor-deposited (CVD) diamond. Final project based on student research interests. Prerequisite: consent of instructor.
Terms: Spr | Units: 3
Instructors: Asheghi, M. (PI)

ME 361: Turbulence

Governing equations. Averaging and correlations. Reynolds equations and Reynolds stresses. Free shear flows, turbulent jet, turbulent length and time scales, turbulent kinetic energy and kinetic energy dissipation, and kinetic energy budget. Kolmogorov's hypothesis and energy spectrum. Wall bounded flows, channel flow and boundary layer, viscous scales, and law of the wall. Turbulence modeling, gradient transport and eddy viscosity, mixing length model, two-equation models, Reynolds-stress model, and large-eddy simulation.
Terms: Spr | Units: 3
Instructors: Pitsch, H. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints