2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 32 results for: MATSCI ; Currently searching spring courses. You can expand your search to include all quarters

MATSCI 82N: Science of the Impossible

Imagine a world where cancer is cured with light, objects can be made invisible, and teleportation is allowed through space and time. The future once envisioned by science fiction writers is now becoming a reality, thanks to advances in materials science and engineering. This seminar will explore 'impossible' technologies - those that have shaped our past and those that promise to revolutionize the future. Attention will be given to both the science and the societal impact of these technologies. We will begin by investigating breakthroughs from the 20th century that seemed impossible in the early 1900s, such as the invention of integrated circuits and the discovery of chemotherapy. We will then discuss the scientific breakthroughs that enabled modern 'impossible' science, such as photodynamic cancer therapeutics, invisibility, and psychokinesis through advanced mind-machine interfaces. Lastly, we will explore technologies currently perceived as completely impossible and brainstorm the breakthroughs needed to make such science fiction a reality. The course will include introductory lectures and in-depth conversations based on readings. Students will also be given the opportunity to lead class discussions on a relevant 'impossible science' topic of their choosing.
Terms: Spr | Units: 3
Instructors: Dionne, J. (PI)

MATSCI 83N: Great Inventions That Matter

This introductory seminar starts by illuminating on the general aspects of creativity, invention, and patenting in engineering and medicine, and how Stanford University is one of the world's foremost engines of innovation. We then take a deep dive into some great technological inventions which are still playing an essential role in our everyday lives, such as fiber amplifier, digital compass, computer memory, HIV detector, personal genome machine, cancer cell sorting, brain imaging, and mind reading. The stories and underlying materials and technologies behind each invention, including a few examples by Stanford faculty and student inventors, are highlighted and discussed. A special lecture focuses on the public policy on intellectual properties (IP) and the resources at Stanford Office of Technology Licensing (OTL). Each student will have an opportunity to present on a great invention from Stanford (or elsewhere), or to write a (mock) patent disclosure of his/her own ideas.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA

MATSCI 84N: Re-engineering the energy landscape

Why hasn't electricity from solar panels, wind turbines, and other environmentally friendly resources taken over our energy landscape? Why is a hybrid car or an all-electric vehicle so expansive? In this seminar we will explore energy technologies and focus on how development in materials science enables a greener future. This seminar takes a hands-on approach; we will make solar cells and batteries and generate our own electricity. We will also include field trips to companies running large-scale energy production and green energy for transportation. Lastly we will explore advanced energy materials research at Stanford and find what still needs to be done in order to achieve a sustainable energy landscape.
Terms: Spr | Units: 3
Instructors: Melosh, N. (PI)

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 154: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci

MATSCI 155: Nanomaterials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Johanes, P. (PI)

MATSCI 159Q: Japanese Companies and Japanese Society (ENGR 159Q)

Preference to sophomores. The structure of a Japanese company from the point of view of Japanese society. Visiting researchers from Japanese companies give presentations on their research enterprise. The Japanese research ethic. The home campus equivalent of a Kyoto SCTI course.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci
Instructors: Sinclair, R. (PI)

MATSCI 160: Nanomaterials Laboratory

Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and self-assembled monolayers. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints