2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

61 - 70 of 142 results for: all courses

ECON 179: Experimental Economics

Methods and major subject areas that have been addressed by laboratory experiments. Focus is on a series of experiments that build on one another. Topics include decision making, two player games, auctions, and market institutions. How experiments are used to learn about preferences and behavior, trust, fairness, and learning. Final presentation of group projects. Prerequisites: ECON 51 (Public Policy majors may take PUBLPOL 51 as a substitute for ECON 51), ECON 102A.
Terms: not given this year, last offered Winter 2016 | Units: 5 | UG Reqs: WAY-AQR, WAY-SI | Grading: Letter (ABCD/NP)

ECON 190: Introduction to Financial Accounting

This is a Case and Problem Discussion course. How to read, understand, and use corporate financial statements. Oriented towards the use of financial accounting information (rather than the preparer), and emphasizes the reconstruction of economic events from published accounting reports.
Terms: Aut, Spr | Units: 5 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

ECON 191: Introduction to Cost Accounting

Focuses on how managers use accounting information for decision making. Students will study product and service costing, activity based costing, performance management and evaluation, CVP analysis, forecasting, factors to be considered in pricing decision, capital investment analysis, and quality management and measurement.
Terms: Win | Units: 5 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

EE 102A: Signal Processing and Linear Systems I

Concepts and tools for continuous- and discrete-time signal and system analysis with applications in signal processing, communications, and control. Mathematical representation of signals and systems. Linearity and time invariance. System impulse and step responses. System frequency response. Frequency-domain representations: Fourier series and Fourier transforms. Filtering and signal distortion. Time/frequency sampling and interpolation. Continuous-discrete-time signal conversion and quantization. Discrete-time signal processing. Prerequisite: MATH 53 or CME 102.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

EE 102B: Signal Processing and Linear Systems II

Continuation of EE 102A. Concepts and tools for continuous- and discrete-time signal and system analysis with applications in communications, signal processing and control. Analog and digital modulation and demodulation. Sampling, reconstruction, decimation and interpolation. Finite impulse response filter design. Discrete Fourier transforms, applications in convolution and spectral analysis. Laplace transforms, applications in circuits and feedback control. Z transforms, applications in infinite impulse response filter design. Prerequisite: EE 102A.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

EE 103: Introduction to Matrix Methods (CME 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the k-means algorithm. Matrices, left and right inverses, QR factorization. Least-squares and model fitting, regularization and cross-validation. Constrained and nonlinear least-squares. Applications include time-series prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites: MATH 51 or CME 100, and basic knowledge of computing ( CS 106A is more than enough, and can be taken concurrently). EE103/CME103 and Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of Math 104 is on algorithms and concepts.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

EE 108: Digital System Design

Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. *In Autumn, enrollment preference is given to EE majors. Any EE majors who must enroll in Autumn are invited to contact the instructor. Formerly EE 108A.
Terms: Aut, Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 20N: Technology in the Greenhouse

The evidence that human activities are changing the climate is overwhelming. Energy use is woven throughout the fabric of modern societies, and energy systems are also a primary way that humans interact with the global Earth systems like climate. We know enough about the potential impacts of climate change to see that we need to transform the world¿s energy systems to a much cleaner set of technologies with much lower greenhouse gas emissions. Economies that use energy in a clean, cost-effective way will be much more competitive in the future. The clean energy transition is now underway, with reductions in coal use and rapid growth in solar and wind deployment, but there is much more to do to limit the adverse impacts of climate change. This seminar explores technology options available to make the changes needed, in the developed and developing worlds. There is no shortage of energy available for our use. Instead, the challenge is to convert those energy resources into services like e more »
The evidence that human activities are changing the climate is overwhelming. Energy use is woven throughout the fabric of modern societies, and energy systems are also a primary way that humans interact with the global Earth systems like climate. We know enough about the potential impacts of climate change to see that we need to transform the world¿s energy systems to a much cleaner set of technologies with much lower greenhouse gas emissions. Economies that use energy in a clean, cost-effective way will be much more competitive in the future. The clean energy transition is now underway, with reductions in coal use and rapid growth in solar and wind deployment, but there is much more to do to limit the adverse impacts of climate change. This seminar explores technology options available to make the changes needed, in the developed and developing worlds. There is no shortage of energy available for our use. Instead, the challenge is to convert those energy resources into services like electricity and transportation, and that conversion requires technology, as well as policies and markets that enable innovation. The scale of the world¿s energy systems is dauntingly large, and we will need a well-diversified set of options to meet the challenge. Wind, solar, nuclear, carbon capture and storage for fossil fuel use, modified agriculture, electric (and automated) vehicles, advanced air conditioning, and many other technology options exist. We will consider these technologies and ask what barriers will have to be addressed if they are to be deployed at a scale large enough to reduce the impact climate change. The format will be discussions of technologies and their potential with a project and student presentations toward the end of the quarter.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 101: Energy and the Environment (EARTHSYS 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

ENERGY 104: Sustainable Energy for 9 Billion

This course explores the transition to a sustainable energy system at large scales (national and global), and over long time periods (decades). Explores the drivers of global energy demand and the fundamentals of technologies that can meet this demand sustainably. Focuses on constraints affecting large-scale deployment of technologies, as well as inertial factors affecting this transition. Problems will involve modeling global energy demand, deployment rates for sustainable technologies, technological learning and economics of technical change. Recommended: ENERGY 101, 102.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints