2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

131 - 140 of 201 results for: all courses

HUMBIO 88: Introduction to Statistics for the Health Sciences

Students will learn the statistical tools used to describe and analyze data in the fields of medicine and epidemiology. This very applied course will rely on current research questions and publicly available data. Students will gain proficiency with Stata to do basic analyses of health-related data, including linear and logistic regression, and will become sophisticated consumers of health-related statistical results.
Terms: Win | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR

HUMBIO 89: Introduction to Health Sciences Statistics

This course aims to provide a firm grounding in the foundations of probability and statistics, with a focus on analyzing data from the health sciences. Students will learn how to read, interpret, and critically evaluate the statistics in medical and biological studies. The course also prepares students to be able to analyze their own data, guiding them on how to choose the correct statistical test, avoid common statistical pitfalls, and perform basic functions in R deducer. Cardinal Course certified by the Haas Center.
Terms: Aut, Win | Units: 3 | UG Reqs: GER:DB-Math, WAY-AQR

HUMBIO 89X: Introduction to Probability and Statistics for Epidemiology (EPI 259)

(HUMBIO students must enroll in HUMBIO 89X. Med/Graduate students must enroll in EPI 259.) Topics: random variables, expectation, variance, probability distributions, the central limit theorem, sampling theory, hypothesis testing, confidence intervals. Correlation, regression, analysis of variance, and nonparametric tests. Introduction to least squares and maximum likelihood estimation. Emphasis is on medical applications.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

HUMBIO 114: Global Change and Emerging Infectious Disease (EARTHSYS 114, EARTHSYS 214, ESS 213)

The changing epidemiological environment. How human-induced environmental changes, such as global warming, deforestation and land-use conversion, urbanization, international commerce, and human migration, are altering the ecology of infectious disease transmission, and promoting their re-emergence as a global public health threat. Case studies of malaria, cholera, hantavirus, plague, and HIV.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci, WAY-SMA, WAY-AQR
Instructors: Jones, J. (PI)

HUMBIO 154B: Principles of Epidemiology

Epidemiology is the study of the distribution and determinants of health and disease in human populations. In this course, students will learn about design, measures of disease occurrence and measures of association between exposures - be they environmental, behavioral or genetic - and health outcomes of interest. Students will also learn about how error, confounding and bias can impact epidemiological results. The course draws on both classic and contemporary research articles, which students will learn to critically appraise. Through lectures, problem sets, written responses to original articles and in-class discussions, students will gain a solid foundation in epidemiology. HUMBIO 154 courses can be taken separately or as a series. Upper division course with preference given to upperclassmen.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

HUMBIO 154C: Cancer Epidemiology

Clinical epidemiological methods relevant to human research in cancer will be the focus. The concepts of risk; case control, cohort, and cross-sectional studies; clinical trials; bias; confounding; interaction; screening; and causal inference will be introduced and applied. Social, political, economic, and ethical controversies surrounding cancer screening, prevention, and research will be considered. HUMBIO 154 courses can be taken separately or as a series. Prerequisites: Human Biology core or Biology Foundations or instructor consent.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR

LINGUIST 180: From Languages to Information (CS 124, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, social networks. Introducing methods (regex, edit distance, naive Bayes, logistic regression, neural embeddings, inverted indices, collaborative filtering, PageRank), applications (chatbots, sentiment analysis, information retrieval, question answering, text classification, social networks, recommender systems), and ethical issues in both. Prerequisites: CS106B, Python (at the level of CS106A), CS109 (or equivalent background in probability), and programming maturity and knowledge of UNIX equivalent to CS107 (or taking CS107 or CS1U concurrently).
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR

MATSCI 156: Solar Cells, Fuel Cells, and Batteries: Materials for the Energy Solution

This course introduces students to emerging technological solutions to address the pressing energy demands of the world. It is motivated by discussions of the scale of global energy usage and requirements for possible solutions; however, the primary focus will be on the fundamental physics and chemistry of solar cells, fuel cells, and batteries from a materials science perspective. Students will learn about operating principles and performance, economic, and ethical considerations from the ideal device to the installed system. The promise of materials research for providing next generation solutions will be highlighted by guest speakers developing innovative energy technologies. Undergraduates register in 156 for 4 units; graduates register in 256 for 3 units. Prerequisites: Undergraduate coursework in thermodynamics (e.g., MATSCI 144, ME 30) and electromagnetism (e.g., PHYSICS 23/43).
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Chen, E. (PI)

MATSCI 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.
Last offered: Winter 2020 | UG Reqs: WAY-AQR, WAY-SMA

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints