2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 37 results for: CHEMENG

CHEMENG 140: Micro and Nanoscale Fabrication Engineering (CHEMENG 240)

(Same as CHEMENG 140) Survey of fabrication and processing technologies in industrial sectors, such as semiconductor, biotechnology, and energy. Chemistry and transport of electronic and energy device fabrication. Solid state materials, electronic devices and chemical processes including crystal growth, chemical vapor deposition, etching, oxidation, doping, diffusion, thin film deposition, plasma processing. Micro and nanopatterning involving photolithography, unconventional soft lithography and self assembly. Recommended: CHEM 33, 171, and PHYSICS 55
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Bao, Z. (PI)

CHEMENG 150: Biochemical Engineering

Systems-level combination of chemical engineering concepts with biological principles. The production of protein pharmaceuticals as a paradigm to explore quantitative biochemistry and cellular physiology, the elemental stoichiometry of metabolism, recombinant DNA technology, synthetic biology and metabolic engineering, fermentation development and control, product isolation and purification, protein folding and formulation, and biobusiness and regulatory issues. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41 or equivalent.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Hwang, L. (PI)

CHEMENG 183: Biochemistry II (BIO 189, BIO 289, CHEM 183, CHEMENG 283)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: BIO 188/288 or CHEM 181 or CHEMENG 181/281 (formerly 188/288).
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit
Instructors: Dunn, A. (PI)

CHEMENG 191H: Undergraduate Honors Seminar

For Chemical Engineering majors approved for B.S. with Honors research program. Honors research proposal must be submitted and unofficial transcript document BSH status prior to required concurrent registration in 190H and 191H. May be repeated for credit. Corequisite: 190H
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit | Grading: Letter (ABCD/NP)

CHEMENG 240: Micro and Nanoscale Fabrication Engineering (CHEMENG 140)

(Same as CHEMENG 140) Survey of fabrication and processing technologies in industrial sectors, such as semiconductor, biotechnology, and energy. Chemistry and transport of electronic and energy device fabrication. Solid state materials, electronic devices and chemical processes including crystal growth, chemical vapor deposition, etching, oxidation, doping, diffusion, thin film deposition, plasma processing. Micro and nanopatterning involving photolithography, unconventional soft lithography and self assembly. Recommended: CHEM 33, 171, and PHYSICS 55
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Bao, Z. (PI)

CHEMENG 25E: Energy: Chemical Transformations for Production, Storage, and Use (ENGR 25E)

An introduction and overview to the challenges and opportunities of energy supply and consumption. Emphasis on energy technologies where chemistry and engineering play key roles. Review of energy fundamentals along with historical energy perspectives and current energy production technologies. In depth analysises of solar thermal systems, biofuels, photovoltaics and electrochemical devices (batteries and fuel cells). Prerequisites: high school chemistry or equivalent.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

CHEMENG 283: Biochemistry II (BIO 189, BIO 289, CHEM 183, CHEMENG 183)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: BIO 188/288 or CHEM 181 or CHEMENG 181/281 (formerly 188/288).
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Dunn, A. (PI)

CHEMENG 345: Fundamentals and Applications of Spectroscopy (PHOTON 345)

Development of theoretical approaches to spectroscopy, including spectroscopic transitions, transition probabilities, and selection rules. Application to photon and electron spectroscopies of the gas and solid phases. Topics: rotational spectroscopy; infrared and Raman vibrational spectroscopies; fluorescence spectroscopy; Auger, x-ray and ultraviolet photoelectron spectroscopies. Prerequisite: CHEM 271 or course in quantum mechanics.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Bent, S. (PI)

CHEMENG 469: Solid Structure and Properties of Polymers

Fundamental structure-properties relationships of solid polymers in bulk and thin films. Topics include chain conformations in bulk amorphous polymers, glass transition, crystallization, semi-crystalline morphology, liquid crystalline order, polymer blends, block copolymers, polymer networks/gels, semiconducting polymers, and experimental methods of characterizing polymer structure.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Yoon, D. (PI)

CHEMENG 484: The Startup Garage: Testing and Launch (SOMGEN 284)

(Same as STRAMGT 366) This is the second quarter of the two-quarter series. In this quarter, student teams expand the field work they started in the fall quarter. They get out of the building to talk to potential customers, partners, distributors, and investors to test and refine their business model, product/service and market. This quarter the teams will be expected to develop and test a minimally viable product, iterate, and focus on validated lessons on: the market opportunity, user need and behavior, user interactions with the product or service, business unit economics, sale and distribution models, partnerships, value proposition, and funding strategies. Teams will interact with customers, partners, distributors, investors and mentors with the end goal of developing and delivering a funding pitch to a panel of entrepreneurs, venture capitalists, angel investors and faculty.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints