2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 5 of 5 results for: EE102B

EE 102B: Signal Processing and Linear Systems II

Continuation of EE 102A. Concepts and tools for continuous- and discrete-time signal and system analysis with applications in communications, signal processing and control. Analog and digital modulation and demodulation. Sampling, reconstruction, decimation and interpolation. Finite impulse response filter design. Discrete Fourier transforms, applications in convolution and spectral analysis. Laplace transforms, applications in circuits and feedback control. Z transforms, applications in infinite impulse response filter design. Prerequisite: EE 102A.
Terms: Spr | Units: 4 | UG Reqs: WAY-FR, GER:DB-EngrAppSci, WAY-AQR
Instructors: Kahn, J. (PI)

EE 169: Introduction to Bioimaging

Bioimaging is important for both clinical medicine, and medical research. This course will provide a introduction to several of the major imaging modalities, using a signal processing perspective. The course will start with an introduction to multi-dimensional Fourier transforms, and image quality metrics. It will then study projection imaging systems (projection X-Ray), backprojection based systems (CT, PET, and SPECT), systems that use beam forming (ultrasound), and systems that use Fourier encoding (MRI). Prerequisites: EE102A, EE102B
Terms: Aut | Units: 3

EE 264: Digital Signal Processing

This is a course on digital signal processing techniques and their applications. Topics include: review of DSP fundamentals; discrete-time random signals; sampling and multi-rate systems; oversampling and quantization in A-to-D conversion; properties of LTI systems; quantization in fixed-point implementations of filters; digital filter design; discrete Fourier Transform and FFT; spectrum analysis using the DFT; and parametric signal modeling. The course will also discuss applications of DSP in areas such as speech and audio processing, autonomous vehicles, and software radio. An optional (1 unit) project will provide a hands-on opportunity to explore the application of DSP theory to practical real-time applications. Prerequisite: EE102A and EE102B or equivalent.
Terms: Win, Sum | Units: 3-4

EE 379: Digital Communication

Modulation: linear, differential and orthogonal methods; signal spaces; power spectra; bandwidth requirements. Detection: maximum likelihood and maximum a posteriori probability principles; sufficient statistics; correlation and matched-filter receivers; coherent, differentially coherent and noncoherent methods; error probabilities; comparison of modulation and detection methods. Intersymbol interference: single-carrier channel model; Nyquist requirement; whitened matched filter; maximum likelihood sequence detection; Viterbi algorithm; linear equalization; decision-feedback equalization. Multi-carrier modulation: orthogonal frequency-division multiplexing; capacity of parallel Gaussian channels; comparison of single- and multi-carrier techniques. Prerequisite: EE102B, EE278
Terms: Win | Units: 3
Instructors: Kahn, J. (PI)

EE 392E: VLSI Signal Processing

DSP architecture design. Study of circuit and architecture techniques in energy-area-performance space, design methodology based on a data-flow graph model that leads to hardware implementation. We explore automated wordlength reduction, direct and recursive filters, time-frequency analysis and other examples. The project focuses on architecture exploration for selected DSP algorithms. Useful for algorithm designers who consider hardware constraints and for circuit designers who prototype DSP algo-rithms in hardware. Prerequisites: EE102B and EE108A; Recommended: EE264 and EE271.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints