2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 23 results for: RAD

RAD 70N: Surgery, Without All the Blood

What if you could do brain surgery completely noninvasively? This is possible now. There are many ways to focus energy into the body, and these can be used for surgery. We will explore methods for minimally invasive treatments of various conditions such as cancer, atrial fibrillation, and movement disorders. We will start with radiation therapy and its application to cancer. We will discuss the application of thermal energy to heat and ablate tissue. We'll discuss delivery systems including ultrasound, laser, and radiofrequency ablation systems, as well as monitoring imaging methods MRI, CT and ultrasound. Lastly, we will discuss neuromodulation and neurostimulation with deep brain simulators, transcranial magnetic stimulation, direct current stimulation, and ultrasound. We will touch on the biology of these treatments and their clinical application, but the emphasis is on the physics and engineering. High school Physics required.
Terms: Aut | Units: 3
Instructors: Pauly, K. (PI)

RAD 101: Readings in Radiology Research

Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Instructors: Atlas, S. (PI) ; Bammer, R. (PI) ; Barnes, P. (PI) ; Barth, R. (PI) ; Bazalova, M. (PI) ; Beaulieu, C. (PI) ; Becker, C. (PI) ; Biswal, S. (PI) ; Blankenberg, F. (PI) ; Chan, F. (PI) ; Cheng, Z. (PI) ; Chin, F. (PI) ; Dahl, J. (PI) ; Daldrup-Link, H. (PI) ; Daniel, B. (PI) ; Demirci, U. (PI) ; Desser, T. (PI) ; Do, H. (PI) ; Fahrig, R. (PI) ; Federle, M. (PI) ; Fischbein, N. (PI) ; Fleischmann, D. (PI) ; Gambhir, S. (PI) ; Gayer, G. (PI) ; Ghanouni, P. (PI) ; Glover, G. (PI) ; Gold, G. (PI) ; Goris, M. (PI) ; Hargreaves, B. (PI) ; Herfkens, R. (PI) ; Hofmann, L. (PI) ; Hovsepian, D. (PI) ; Hwang, G. (PI) ; Iagaru, A. (PI) ; Ikeda, D. (PI) ; Jaramillo, D. (PI) ; Jeffrey, R. (PI) ; KUO, W. (PI) ; Kamaya, A. (PI) ; Kane, P. (PI) ; Kao, J. (PI) ; Keeling, C. (PI) ; Kothary, N. (PI) ; Lachman, R. (PI) ; Langlotz, C. (PI) ; Larson, D. (PI) ; Lebowitz, E. (PI) ; Leung, A. (PI) ; Levin, C. (PI) ; Lipson, J. (PI) ; Loening, A. (PI) ; Louie, J. (PI) ; Lungren, M. (PI) ; Lutz, A. (PI) ; Mallick, P. (PI) ; Marks, M. (PI) ; Massoud, T. (PI) ; McNab, J. (PI) ; Moseley, M. (PI) ; Moskowitz, P. (PI) ; Napel, S. (PI) ; Newman, B. (PI) ; Nino-Murcia, M. (PI) ; Olcott, E. (PI) ; Paik, D. (PI) ; Pal, S. (PI) ; Paulmurugan, R. (PI) ; Pauly, K. (PI) ; Pelc, N. (PI) ; Pitteri, S. (PI) ; Plevritis, S. (PI) ; Quon, A. (PI) ; Rao, J. (PI) ; Riley, G. (PI) ; Rubesova, E. (PI) ; Rubin, D. (PI) ; Rutt, B. (PI) ; Segall, G. (PI) ; Seidel, F. (PI) ; Shin, L. (PI) ; Soh, H. (PI) ; Sommer, F. (PI) ; Spielman, D. (PI) ; Stevens, K. (PI) ; Stoyanova, T. (PI) ; Sze, D. (PI) ; Thakor, A. (PI) ; Van Dalsem, V. (PI) ; Vasanawala, S. (PI) ; Willmann, J. (PI) ; Wintermark, M. (PI) ; Yao, D. (PI) ; Yeom, K. (PI) ; Zaharchuk, G. (PI) ; Zeineh, M. (PI)

RAD 199: Undergraduate Research

Students undertake investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit
Instructors: Atlas, S. (PI) ; Bammer, R. (PI) ; Barnes, P. (PI) ; Barth, R. (PI) ; Bazalova, M. (PI) ; Beaulieu, C. (PI) ; Becker, C. (PI) ; Biswal, S. (PI) ; Blankenberg, F. (PI) ; Chan, F. (PI) ; Cheng, Z. (PI) ; Chin, F. (PI) ; Dahl, J. (PI) ; Daldrup-Link, H. (PI) ; Daniel, B. (PI) ; Demirci, U. (PI) ; Desser, T. (PI) ; Do, H. (PI) ; Fahrig, R. (PI) ; Federle, M. (PI) ; Fischbein, N. (PI) ; Fleischmann, D. (PI) ; Gambhir, S. (PI) ; Gayer, G. (PI) ; Ghanouni, P. (PI) ; Glover, G. (PI) ; Gold, G. (PI) ; Goris, M. (PI) ; Hargreaves, B. (PI) ; Herfkens, R. (PI) ; Hofmann, L. (PI) ; Hovsepian, D. (PI) ; Hwang, G. (PI) ; Iagaru, A. (PI) ; Ikeda, D. (PI) ; Jaramillo, D. (PI) ; Jeffrey, R. (PI) ; KUO, W. (PI) ; Kamaya, A. (PI) ; Kane, P. (PI) ; Kao, J. (PI) ; Keeling, C. (PI) ; Kothary, N. (PI) ; Lachman, R. (PI) ; Langlotz, C. (PI) ; Larson, D. (PI) ; Lebowitz, E. (PI) ; Leung, A. (PI) ; Levin, C. (PI) ; Lipson, J. (PI) ; Loening, A. (PI) ; Louie, J. (PI) ; Lungren, M. (PI) ; Lutz, A. (PI) ; Mallick, P. (PI) ; Marks, M. (PI) ; Massoud, T. (PI) ; McNab, J. (PI) ; Moseley, M. (PI) ; Moskowitz, P. (PI) ; Napel, S. (PI) ; Newman, B. (PI) ; Nino-Murcia, M. (PI) ; Olcott, E. (PI) ; Paik, D. (PI) ; Pal, S. (PI) ; Paredes Castro, P. (PI) ; Paulmurugan, R. (PI) ; Pauly, K. (PI) ; Pelc, N. (PI) ; Pitteri, S. (PI) ; Plevritis, S. (PI) ; Quon, A. (PI) ; Rao, J. (PI) ; Riley, G. (PI) ; Rubesova, E. (PI) ; Rubin, D. (PI) ; Rusu, M. (PI) ; Rutt, B. (PI) ; Segall, G. (PI) ; Seidel, F. (PI) ; Shin, L. (PI) ; Soh, H. (PI) ; Sommer, F. (PI) ; Spielman, D. (PI) ; Stevens, K. (PI) ; Stoyanova, T. (PI) ; Sze, D. (PI) ; Thakor, A. (PI) ; Van Dalsem, V. (PI) ; Vasanawala, S. (PI) ; Willmann, J. (PI) ; Wintermark, M. (PI) ; Wu, J. (PI) ; Yao, D. (PI) ; Yeom, K. (PI) ; Zaharchuk, G. (PI) ; Zeineh, M. (PI)

RAD 206: Mixed-Reality in Medicine

Mixed reality uses transparent screens to place virtual objects in the user's field of vision such that they can be aligned to and interact with actual objects, which has tremendous potential for medical applications. This course aims to teach the basics of mixed-reality device technology, and to direct connect engineering students to physicians for real-world applications. Student teams would compete two projects (1) developing new mixed-reality technology and (2) applying mixed-reality to solve real medical challenges.nPrerequisites: (1) Programming competency in a language such as C, C++. or Python. (2) A basic signal processing course such as EE102B (Digital Signal Processing). A medical imaging course, while not required, will be helpful. Please contact the instructors with any questions about prerequisites.

RAD 220: Introduction to Imaging and Image-based Human Anatomy (BIOE 220)

Focus on learning the fundamentals of each imaging modality including X-ray Imaging, Ultrasound, CT, and MRI, to learn normal human anatomy and how it appears on medical images, to learn the relative strengths of the modalities, and to answer, "What am I looking at?" Course website:  http://bioe220.stanford.edu
Terms: Win | Units: 3

RAD 221: Physics and Engineering of Radionuclide-based Medical Imaging (BIOE 221)

Physics, instrumentation, and algorithms for radionuclide-based medical imaging, with a focus on positron emission tomography (PET) and single photon emission computed tomography (SPECT). Topics include basic physics of photon emission from the body and detection, sensors, readout and data acquisition electronics, system design, strategies for tomographic image reconstruction, system calibration and data correction algorithms, methods of image quantification, and image quality assessment, and current developments in the field. Prerequisites: A year of university-level mathematics and physics.
Terms: Win | Units: 3

RAD 222: Instrumentation and Applications for Multi-modality Molecular Imaging of Living Subjects (BIOE 222)

Focuses on instruments, algorithms and other technologies for imaging of cellular and molecular processes in living subjects. Introduces preclinical and clinical molecular imaging modalities, including strategies for molecular imaging using PET, SPECT, MRI, Ultrasound, Optics, and Photoacoustics. For each modality, lectures cover the basics of the origin and properties of imaging signal generation, instrumentation physics and engineering of signal detection, image signal processing, image reconstruction, and image data quantification.
Terms: Aut | Units: 3-4

RAD 224: Probes and Applications for Multi-modality Molecular Imaging of Living Subjects (BIOE 224)

Focuses on molecular contrast agents (a.k.a. "probes") that interrogate and target specific cellular and molecular disease mechanisms. Covers the ideal characteristics of molecular probes and how to optimize their design for use as effective imaging reagents that enables readout of specific steps in biological pathways and reveal the nature of disease through noninvasive imaging assays. Prerequisites: none.
Terms: Win | Units: 4 | Repeatable 2 times (up to 8 units total)

RAD 225: Ultrasound Imaging and Therapeutic Applications (BIOE 225)

Covers the basic concepts of ultrasound imaging including acoustic properties of biological tissues, transducer hardware, beam formation, and clinical imaging.  Also includes the therapeutic applications of ultrasound including thermal and mechanical effects, visualization of the temperature and radiation force with MRI, tissue assessment with MRI and ultrasound, and ultrasound-enhanced drug delivery. Course website: http://bioe225.stanford.edu
Last offered: Autumn 2016
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints