2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

81 - 90 of 120 results for: PHYSICS

PHYSICS 260: Introduction to Stellar and Galactic Astrophysics (PHYSICS 160)

Radiative processes. Observed characteristics of stars and the Milky Way galaxy. Physical processes in stars and matter under extreme conditions. Structure and evolution of stars from birth to death. White dwarfs, planetary nebulae, supernovae, neutron stars, pulsars, binary stars, x-ray stars, and black holes. Galactic structure, interstellar medium, molecular clouds, HI and HII regions, star formation, and element abundances. Undergraduates register for PHYSICS 160. Graduate students register for PHYSICS 260. Pre-requisite: Physics 120 or permission of instructor. Recommended: Some familiarity with plotting and basic numerical calculations.
Terms: Win | Units: 3
Instructors: Romani, R. (PI)

PHYSICS 261: Introduction to Cosmology and Extragalactic Astrophysics (PHYSICS 161)

What do we know about the physical origins, content, and evolution of the Universe -- and how do we know it? Students learn how cosmological distances and times, and the geometry and expansion of space, are described and measured. Composition of the Universe. Origin of matter and the elements. Observational evidence for dark matter and dark energy. Thermal history of the Universe, from inflation to the present. Emergence of large-scale structure from quantum perturbations in the early Universe. Astrophysical tools used to learn about the Universe. Big open questions in cosmology. Undergraduates register for Physics 161. Graduates register for Physics 261. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 120 or equivalent.
Terms: Spr | Units: 3

PHYSICS 262: General Relativity

Einstein's General Theory of Relativity is a basis for modern ideas of fundamental physics, including string theory, as well as for studies of cosmology and astrophysics. The course begins with an overview of special relativity, and the description of gravity as arising from curved space. From Riemannian geometry and the geodesic equations, to curvature, the energy-momentum tensor, and the Einstein field equations. Applications of General Relativity: topics may include experimental tests of General Relativity and the weak-field limit, black holes (Schwarzschild, charged Reissner-Nordstrom, and rotating Kerr black holes), gravitational waves (including detection methods), and an introduction to cosmology (including cosmic microwave background radiation, dark energy, and experimental probes). Prerequisite: PHYSICS 121 or equivalent including special relativity.
Terms: Aut | Units: 3

PHYSICS 266: Statistical Methods in Experimental Physics (PHYSICS 166)

Statistical methods constitute a fundamental tool for the analysis and interpretation of experimental physics data. In this course, students will learn the foundations of statistical data analysis methods and how to apply them to the analysis of experimental data. Problem sets will include data-sets from real experiments and require the use of programming tools to extract physics results. Topics include probability and statistics, experimental uncertainties, parameter estimation, confidence limits, and hypothesis testing. Students will be required to complete a final project.
Terms: Win | Units: 4

PHYSICS 267: Statistical Methods in Astrophysics

(Formerly numbered PHYSICS 366) Foundations of principled inference from data, primarily in the Bayesian framework, with applications in astrophysics and cosmology. Topics include probabilistic modeling of data, parameter constraints and model comparison, numerical methods including Markov Chain Monte Carlo, and connections to frequentist and machine learning frameworks. The course is organized around tutorial notebooks using Python and Numpy, providing hands-on experience with real data. Prerequisites: programming in Python at the level of CS 106A or PHYSICS 113; probability at the level of STATS 116, CS 109, or PHYSICS 166/266; or permission of instructor. Normally offered every 2 years.

PHYSICS 268: Physics with Neutrinos

Relativistic fermions, Weyl and Dirac equations, Majorana masses. Electroweak theory, neutrino cross sections, neutrino refraction in matter, MSW effect. Three-flavor oscillations, charge-parity violation, searches for sterile neutrinos, modern long- and short-baseline oscillation experiments. Seesaw mechanism, models of neutrino masses, lepton flavor violation. Neutrinoless double beta decay. Cosmological constraints on neutrino properties. Advanced topics, such as collective oscillations in supernovae or ultrahigh energy neutrinos, offered as optional projects. The material in this course is largely complementary to PHYS 269, focusing on particle physics aspects of neutrinos. Prerequisites: PHYSICS 121, 131 and 171 or equivalent. PHYS 230-231, 269, 152 and 161 or equivalent are helpful, but not required.
Last offered: Spring 2019

PHYSICS 269: Neutrinos in Astrophysics and Cosmology

Basic neutrino properties. Flavor evolution in vacuum and in matter. Oscillations of atmospheric, reactor and beam neutrinos. Measurements of solar neutrinos; physics of level-crossing and the resolution of the solar neutrino problem. Roles of neutrinos in stellar evolution; bounds from stellar cooling. Neutrinos and stellar collapse; energy transport, collective flavor oscillations, neutrino flavor in turbulent medium. Ultra-high-energy neutrinos. The cosmic neutrino background, its impact on the cosmic microwave background and structure formation; cosmological bounds on the neutrino sector. Prerequisites/corerequisites: PHYSICS 121, 131 and 171 or equivalent. PHYS 230-231, 152 and 161 or equivalent are helpful, but not required. May be repeat for credit
Last offered: Winter 2021 | Repeatable for credit

PHYSICS 275: Electrons in Nanostructures

The strange behavior of electrons in metals or semiconductors at length scales below 1 micron, smaller than familiar macroscopic objects but larger than atoms. Ballistic transport, Coulomb blockade, localization, quantum mechanical interference, persistent currents, graphene, topological insulators, 1D wires. After a few background lectures, students come to each class session prepared to discuss one or more classic review articles or recent experimental publications.Prerequisite: undergraduate quantum mechanics and solid state physics preferred; physicists, engineers, chemists welcome.
Last offered: Winter 2023

PHYSICS 276: Electrons in Low Dimensional and Narrow Band Systems

Electrons in low-dimensional and narrow-band systems often display novel and extreme properties - unconventional superconductivity quantum hall effects, quantum mechanical interference, and localization, interplay of correlation and topology, natural and engineered (e.g., twist stacking) narrow-band systems with rich and unexpected behavior. After a few background lectures, students come to each class session prepared to discuss one or more classic review articles or recent experimental publications. Prerequisite: undergraduate quantum mechanics and solid-state physics preferred; physicists, engineers, and chemists welcome.
Terms: Win | Units: 3
Instructors: Shen, Z. (PI)

PHYSICS 282: ULTRACOLD QUANTUM PHYSICS (APPPHYS 282, PHYSICS 182)

Introduction to the physics of quantum optics and atoms in the ultracold setting. Quantum gases and photons are employed in quantum simulation, sensing, and computation. Modern atomic physics and quantum optics will be covered, including laser cooling and trapping, ultracold collisions, optical lattices, ion traps, cavity QED, BEC and quantum degenerate Fermi gases, and quantum phase transitions in quantum gases and lattices. Prerequisites: Undergraduate quantum and statistical mechanics courses.
Terms: Win | Units: 3
Instructors: Lev, B. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints