2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 66 results for: BIO

BIO 226: Introduction to Biophysics (APPPHYS 205, BIO 126)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4

BIO 239: The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi (BIO 115)

Fungi are critical, yet often hidden, components of the biosphere. They regulate decomposition, are primary partners in plant symbiosis and strongly impact agriculture and economics. Students will explore the fascinating world of fungal biology, ecology and evolution via lecture, lab, field exercises and Saturday field trips that will provide traditional and molecular experiences in the collection, analysis and industrial use of diverse fungi. Students will chose an environmental niche, collect and identify resident fungi, and hypothesize about their community relationship. Prerequisite: BIO 81, 85 recommended.
Terms: Win | Units: 4

BIO 243: Quantitative Methods for Marine Ecology and Conservation (BIO 143, CEE 164, CEE 264H, EARTHSYS 143H, EARTHSYS 243H, OCEANS 143)

NOTE: This course will be taught in-person on main campus, in hybrid format with Zoom options. The goal of this course is to learn the foundations of ecological modeling with a specific (but not exclusive) focus on marine conservation and sustainable exploitation of renewable resources. Students will be introduced to a range of methods - from basic to advanced - to characterize population structure, conduct demographic analyses, estimate extinction risk, identify temporal trends and spatial patterns, quantify the effect of environmental determinants and anthropogenic pressures on the dynamics of marine populations, describe the potential for adaptation to climate change. This course will emphasize learning by doing, and will rely heavily on practical computer laboratories, in R and/or Phyton, based on data from our own research activities or peer reviewed publications. Students with a background knowledge of statistics, programming and calculus will be most welcome. Formally BIOHOPK 143H and 243H.
Terms: Win | Units: 4

BIO 244: Fundamentals of Molecular Evolution (BIO 113)

The inference of key molecular evolutionary processes from DNA and protein sequences. Topics include random genetic drift, coalescent models, effects and tests of natural selection, combined effects of linkage and natural selection, codon bias and genome evolution. Prerequisites: Biology core or BIO 82, 85 or graduate standing in any department, and consent of instructor.
Terms: Win | Units: 4

BIO 245: Animal Behavior (BIO 145)

Animal behavior with an emphasis on social and collective behavior. How do animals interact with each other and the rest of the world around them? This is a project-based course in a seminar format, including class discussion of journal articles, and independent research projects based on observing the behavior of animals on campus. Prerequisites suggested: Biology or Human Biology core or BIO 81 and 85 or consent of instructor; BIO/ES 30. Recommended: some background in statistics.
Terms: Win | Units: 3
Instructors: Gordon, D. (PI)

BIO 247: Genomic approaches to the study of human disease (BIO 127, GENE 247)

This course will cover a range of genetic and genomic approaches to studying human phenotypic variation and disease. We will discuss the genetic basis of Mendelian and complex diseases, as well as clinical applications including prenatal testing, and pediatric and cancer diagnostics. The course will include lectures as well as critical reading and discussion of the primary literature. Prerequisite: BIO 82 or equivalent. Open to advanced undergraduate students.
Terms: Win | Units: 3

BIO 249: The Neurobiology of Sleep (BIO 149, HUMBIO 161, PSYC 149, PSYC 261)

The neurochemistry and neurophysiology of changes in brain activity and conscious awareness are associated with changes in the sleep/wake state. Behavioral and neurobiological phenomena include sleep regulation, sleep homeostasis, circadian rhythms, sleep disorders, sleep function, and the molecular biology of sleep. Preference to seniors and graduate students.
Terms: Win | Units: 4

BIO 265: Quantitative Approaches in Modern Biology (BIO 165)

Modern research approaches tightly integrate experimentation with data analysis and mathematical modeling to provide unprecedented insights into the organization and functioning of living systems. This course explores the quantitative basis of major cellular processes and their coordination to form a cohesive physiological entity that is capable of rapid growth and acclimation to changing environments. Weekly lectures will be accompanied by 'dry lab sessions' in which students analyze experimental data sets and discuss the challenges of accomplishing rigorous and reproducible research. As such, students will actively develop a fundamental skill set of quantitative biology which includes knowledge in coding, dynamical systems modeling, and statistics. Assumes basic (but not advanced) familiarity with math, e.g. MATH51. Enrollment by permission of the professor, apply at https://forms.gle/j6ocJs8fQFPK1GGLA.
Terms: Win | Units: 3

BIO 282: Modeling Cultural Evolution (BIO 182)

Seminar. Quantitative models for the evolution of socially transmitted traits. Rates of change of learned traits in populations and patterns of cultural diversity as a function of innovation and cultural transmission. Learning in constant and changing environments. Possible avenues for gene-culture coevolution.
Terms: Win | Units: 3
Instructors: Feldman, M. (PI)

BIO 286: Archaeobotany (ARCHLGY 126, ARCHLGY 226, BIO 186)

Archaeobotany, also known as paleoethnobotany, is the study of the interrelationships of plants and humans through the archaeological record. Knowledge and understanding of Archaeobotany sufficient to interpret, evaluate, and understand archaeobotanical data. Dominant approaches in the study of archaeobotanical remains: plant macro-remains, pollen, phytoliths, and starch grains in the identification of diet and environmental reconstruction.
Terms: Win | Units: 5
Instructors: Grauer, K. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints