2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 195 results for: ME

ME 238: Patent Prosecution

The course follows the patent application process through the important stages: inventor interviews, patentability analysis, drafting claims, drafting a specification, filing a patent application, and responding to an office action. The subject matter and practical instruction relevant to each stage are addressed in the context of current rules and case law. The course includes four written assignments: an invention capture, a claim set, a full patent application, and an Office Action response. Pre-requisites: Law 326 (IP:Patents), Law 409 (Intro IP), ME 208, or MS&E 278.
Last offered: Winter 2023

ME 241: Mechanical Behavior of Nanomaterials (MATSCI 241)

Mechanical behavior of the following nanoscale solids: 2D materials (metal thin films, graphene), 1D materials (nanowires, carbon nanotubes), and 0D materials (metallic nanoparticles, quantum dots). This course will cover elasticity, plasticity and fracture in nanomaterials, defect-scarce nanomaterials, deformation near free surfaces, coupled optoelectronic and mechanical properties (e.g. piezoelectric nanowires, quantum dots), and nanomechanical measurement techniques. Prerequisites: Mechanics of Materials ( ME80) or equivalent.
Last offered: Autumn 2018

ME 242B: Mechanical Vibrations (AA 242B)

For M.S.-level graduate students. Covers the vibrations of discrete systems and continuous structures. Introduction to the computational dynamics of linear engineering systems. Review of analytical dynamics of discrete systems; undamped and damped vibrations of N-degree-of-freedom systems; continuous systems; approximation of continuous systems by displacement methods; solution methods for the Eigenvalue problem; direct time-integration methods. Prerequisites: AA 242A or equivalent (recommended but not required); basic knowledge of linear algebra and ODEs; no prior knowledge of structural dynamics is assumed.
Last offered: Spring 2019

ME 243: Designing Emotion: for Reactive Car Interfaces

Students learn to define emotions as physiology, expression, and private experience using the automobile and shared space. Explores the meaning and impact of personal and user car experience. Reflective, narrative, and socio-cognitive techniques serve to make sense of mobility experiences; replay memories; examine engagement; understand user interviews. This course celebrates car fascination and leads the student through finding and telling the car experience through discussion, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and in car experiences. Methods draw from socio-cognitive psychology, design thinking, and fine art, and are applied to the car or mobility experience. Course culminates in a final individual narrative presentation and group project demonstration. Class size limited to 18.
Terms: Aut | Units: 1-3 | Repeatable 2 times (up to 3 units total)
Instructors: Karanian, B. (PI)

ME 244: Mechanotransduction in Cells and Tissues (BIOE 283, BIOPHYS 244)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted. This class is for graduate students only.
Terms: Win | Units: 3

ME 246: Demand Modeling for Transportation

Predicting human behavior in the future is key to the success of businesses and policies, whether it's predicting how many new products will be sold next year, or how many people will want to cross a bridge next month. This seminar explores key strategies that demand planners use to predict the future, from travel surveys, observational data and interventions. Students will learn basic techniques, considerations when implementing them, and hear from practitioners applying demand modeling in transportation-specific roles.
Last offered: Spring 2020

ME 248: Silver Pendant Project

In ME248 a C/NC class, students design and create a silver pendant. Beginning with a basic introduction to design and CAD, students use a computer aided design tool to create a 3D model of their pendant design. Next, using machines and processes at the Product Realization Lab, students build a version of their part in a wax-like material. This part is then used in a lost-wax investment casting process to turn the printed part into a cast silver part. Finally, the students are introduced to a set of hand tools they will use to turn their cast silver part into a finished silver pendant. Students who take ME248 for 1 unit complete one pendant, and take 4 2 hour labs: wax part preparation lab, casting lab, and two finishing labs. Students who take ME248 for 2 units complete a second project beyond the initial pendant, and in addition to the 4 labs will do 3 additional 2 hour labs: a wax printing lab, a sprueing/gating lab and an investing lab. This course must be taken for 2 units to be eligible for Ways credit. Summer offering not eligible for Ways credit.
Terms: Spr, Sum | Units: 1-2 | UG Reqs: WAY-CE

ME 257: Gas-Turbine Design Analysis (ME 357)

This course is concerned with the design analysis of gas-turbine engines. After reviewing essential concepts of thermo- and aerodynamics, we consider a turbofan gas-turbine engine that is representative of a business aircraft. We will first conduct a performance analysis to match the engine design with aircraft performance requirements. This is followed by examining individual engine components, including compressor, combustor, turbines, and nozzles, thereby increase the level of physical description. Aspects of modern engine concepts, environmental impacts, and advanced engine-analysis methods will be discussed. Students will have the opportunity to develop a simulation code to perform a basic design analysis of a turbofan engine. Course Prerequisites: ENGR 30, ME 70, ME 131B, CME 100
Terms: Spr | Units: 3

ME 258: Fracture and Fatigue of Materials and Thin Film Structures (MATSCI 358)

Linear-elastic and elastic-plastic fracture mechanics from a materials science perspective, emphasizing microstructure and the micromechanisms of fracture. Plane strain fracture toughness and resistance curve behavior. Mechanisms of failure associated with cohesion and adhesion in bulk materials, composites, and thin film structures. Fracture mechanics approaches to toughening and subcritical crack-growth processes, with examples and applications involving cyclic fatigue and environmentally assisted subcritical crack growth. Prerequisite: 151/251, 198/208, or equivalent. SCPD offering.
Terms: Win | Units: 3

ME 263: The Chair

Students design and fabricate a highly refined chair. The process is informed and supported by historical reference, anthropometrics, form studies, user testing, material investigations, and workshops in wood steam-bending, plywood forming, metal tube bending, TIG & MIG welding, upholstery & sewing. Prerequisite: ME103/203 or consent of instructor. May be repeated for credit.
Terms: Win | Units: 4 | Repeatable 2 times (up to 8 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints