2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 34 results for: CME

CME 206: Introduction to Numerical Methods for Engineering (AA 214A, ME 300C)

Numerical methods from a user's point of view. Lagrange interpolation, splines. Integration: trapezoid, Romberg, Gauss, adaptive quadrature; numerical solution of ordinary differential equations: explicit and implicit methods, multistep methods, Runge-Kutta and predictor-corrector methods, boundary value problems, eigenvalue problems; systems of differential equations, stiffness. Emphasis is on analysis of numerical methods for accuracy, stability, and convergence. Introduction to numerical solutions of partial differential equations; Von Neumann stability analysis; alternating direction implicit methods and nonlinear equations. Prerequisites: CME 200/ ME 300A, CME 204/ ME 300B.
Terms: Aut, Spr | Units: 3

CME 211: Introduction to Programming for Scientists and Engineers (EARTHSCI 211)

Basic usage of the Python and C/C++ programming languages are introduced and used to solve representative computational problems from various science and engineering disciplines. Software design principles including time and space complexity analysis, data structures, object-oriented design, decomposition, encapsulation, and modularity are emphasized. Usage of campus wide Linux compute resources: login, file system navigation, editing files, compiling and linking, file transfer, etc. Versioning and revision control, software build utilities, and the LaTeX typesetting software are introduced and used to help complete individual programming assignments and a final project. Prerequisite: Some previous experience with programming (does not need to be a formal course in programming).
Terms: Aut | Units: 3

CME 242: Mathematical and Computational Finance Seminar (STATS 239)

| Repeatable for credit
Instructors: Jain, K. (PI)

CME 244: Project Course in Mathematical and Computational Finance

For graduate students in the MCF track; students will work individually or in groups on research projects.
Instructors: Jain, K. (PI)

CME 245: Topics in Mathematical and Computational Finance

Current topics for enrolled students in the MCF program; can be repeated up to three times.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: Jain, K. (PI)

CME 263: Introduction to Linear Dynamical Systems (EE 263)

Applied linear algebra and linear dynamical systems with application to circuits, signal processing, communications, and control systems. Topics: least-squares approximations of over-determined equations and least-norm solutions of underdetermined equations. Symmetric matrices, matrix norm, and singular value decomposition. Eigenvalues, left and right eigenvectors, with dynamical interpretation. Matrix exponential, stability, and asymptotic behavior. Multi-input/multi-output systems, impulse and step matrices; convolution and transfer matrix descriptions. Control, reachability, and state transfer; observability and least-squares state estimation. Prerequisites: linear algebra and matrices as in MATH 103; differential equations and Laplace transforms as in EE 102A.
Terms: Aut, Sum | Units: 3

CME 291: Master's Research

Students require faculty sponsor. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit

CME 292: Advanced MATLAB for Scientific Computing

Short course running first four weeks of the quarter (8 lectures) with interactive lectures and application based assignment. Students will be introduced to advanced MATLAB features, syntaxes, and toolboxes not traditionally found in introductory courses. Material will be reinforced with in-class examples, demos, and homework assignment involving topics from scientific computing. MATLAB topics will be drawn from: advanced graphics (2D/3D plotting, graphics handles, publication quality graphics, animation), MATLAB tools (debugger, profiler), code optimization (vectorization, memory management), object-oriented programming, compiled MATLAB (MEX files and MATLAB coder), interfacing with external programs, toolboxes (optimization, parallel computing, symbolic math, PDEs). Scientific computing topics will include: numerical linear algebra, numerical optimization, ODEs, and PDEs.
Terms: Aut, Win, Spr | Units: 1

CME 300: First Year Seminar Series

Required for first-year ICME Ph.D. students; recommended for first-year ICME M.S. students. Presentations about research at Stanford by faculty and researchers from Engineering, H&S, and organizations external to Stanford. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit

CME 302: Numerical Linear Algebra

First in a three quarter graduate sequence. Solution of systems of linear equations: direct methods, error analysis, structured matrices; iterative methods and least squares. Parallel techniques. Prerequisites: CME 108, MATH 103 or 113.
Terms: Aut | Units: 3
Instructors: Darve, E. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints