2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

151 - 160 of 176 results for: BIO

BIO 181: Human Genetic Variation

The geographic distribution of human genetic variation; the genetic perspective on ancient and recent human migrations; quantitative methods for inference of human evolutionary history from patterns of genetic variation. Connections of human genetic variation to current topics such as ancestry testing, DNA forensics, and identification of disease genes. Prerequisites; Bio or HumBio core, calculus.

BIO 182: Modeling Cultural Evolution (BIO 282)

Seminar. Quantitative models for the evolution of socially transmitted traits. Rates of change of learned traits in populations and patterns of cultural diversity as a function of innovation and cultural transmission. Learning in constant and changing environments. Possible avenues for gene-culture coevolution.

BIO 186: Natural History of the Vertebrates (BIO 286)

Broad survey of the diversity of vertebrate life. Discussion of the major branches of the vertebrate evolutionary tree, with emphasis on evolutionary relationships and key adaptations as revealed by the fossil record and modern phylogenetics. Modern orders introduced through an emphasis on natural history, physiology, behavioral ecology, community ecology, and conservation. Lab sessions focused on comparative skeletal morphology through hands-on work with skeletal specimens. Discussion of field methods and experience with our local vertebrate communities through field trips to several of California¿s distinct biomes. Prerequisite: Biology core.

BIO 207: Life and Death of Proteins

How proteins are made and degraded in the cell. Discussion of primary literature. Case studies follow the evolution of scientific ideas, and evaluate how different experimental approaches contribute to our understanding of a biological problem. Emphasis on multidisciplinary approaches. Topics: protein folding and assembly, mechanisms of chaperone action, sorting into organelles, misfolding and disease, and the ubiquitin-proteasome pathway. Enrollment limited to 30.

BIO 216: Terrestrial Biogeochemistry (EESS 216)

Nutrient cycling and the regulation of primary and secondary production in terrestrial, freshwater, and marine ecosystems; land-water and biosphere-atmosphere interactions; global element cycles and their regulation; human effects on biogeochemical cycles. Prerequisite: graduate standing in science or engineering; consent of instructor for undergraduates or coterminal students.

BIO 217: Neuronal Biophysics

Biophysical descriptions and mechanisms of passive and excitable membranes, ion channels and pumps, action potential propagation, and synaptic transmission. Introduction to dynamics of single neurons and neuronal networks. Emphasis is on the experimental basis for modern research applications. Interdisciplinary aspects of biology and physics. Literature, problem sets, and student presentations. Prerequisites: undergraduate physics, calculus, and biology.

BIO 220: Essential Mathematics for Research in Life and Social Sciences

Targeted review of mathematics for research in life (and social) sciences. Material includes: real and complex functions, sequences and series, essential calculus, linear algebra, probability, stochastic processes, model-building and introduction to Matlab. Links techniques to applications in research and modeling, particularly in population biology. Students will use online materials including lecture videos, problem sets, course notes, and self-paced tests.

BIO 223: Stochastic and Nonlinear Dynamics (APPPHYS 223)

Theoretical analysis of dynamical processes: dynamical systems, stochastic processes, and spatiotemporal dynamics. Motivations and applications from biology and physics. Emphasis is on methods including qualitative approaches, asymptotics, and multiple scale analysis. Prerequisites: ordinary and partial differential equations, complex analysis, and probability or statistical physics.

BIO 238: Ecosystem Services: The Science of Valuing Nature (BIO 138)

This advanced course explores the science of valuing nature, beginning with its historical origins, and then its recent development in natural (especially ecological), economic, psychological, and other social sciences. We will use the ecosystem services framework (characterizing benefits from ecosystems to people) to define the state of knowledge, core methods of analysis, and research frontiers, such as at the interface with biodiversity, resilience, human health, and human development. Intended for diverse students, with a focus on research and real-world cases. Class size is limited to 12. To apply, please email the instructor (gdaily@stanford.edu) with a brief description of your background and research interests.

BIO 257: Biochemistry and Molecular Biology of Plants (BIO 157)

Biochemical and molecular basis of plant growth and adaptation. Topics include: hormone signal transduction; photoreceptor chemistry and signaling; metabolite sensing and transport; dynamics of photosynthesis; plant innate immunity and symbiosis. Lectures and readings will emphasize research methods. Prerequisite: Biology core or equivalent, or consent of instructor.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints