2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

11 - 20 of 33 results for: ESS

ESS 165: Advanced Geographic Information Systems (ESS 265)

Building on the Fundamentals of Geographic Information Systems course, this class delves deeper into geospatial analysis and mapping techniques. The class is heavily project-based and students are encouraged to bring their own research questions. Topics include topographic analysis, interpolation, spatial statistics, network analysis, and scripting using Python and Acrpy. All students are required to attend a weekly lab. ESS 164 or equivalent is a prerequisite.
Terms: Spr | Units: 4 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Lyons, E. (PI)

ESS 206: World Food Economy (EARTHSYS 106, EARTHSYS 206, ECON 106, ECON 206, ESS 106)

The economics of food production, consumption, and trade. The micro- and macro- determinants of food supply and demand, including the interrelationship among food, income, population, and public-sector decision making. Emphasis on the role of agriculture in poverty alleviation, economic development, and environmental outcomes. (graduate students enroll in 206)
Terms: not given this year | Units: 5 | Grading: Letter (ABCD/NP)

ESS 210: Techniques in Environmental Microbiology

Fundamentals and application of laboratory techniques to study the diversity and activity of microorganisms in environmental samples, including soil, sediment, and water. Emphasis is on culture-independent approaches, including epifluorescence microscopy, extraction and analysis of major biomolecules (DNA, RNA, protein, lipids), stable isotope probing, and metabolic rate measurements. Format will include lectures, laboratory exercises, and discussions. Students will learn how to collect, analyze, and understand common and cutting-edge datasets in environmental microbiology.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Dekas, A. (PI)

ESS 214: Introduction to geostatistics and modeling of spatial uncertainty

Introduction of fundamental geostatistical tools for modeling spatial variability and uncertainty, and mapping of environmental attributes. Additional topics include sampling design and incorporation of different types of information (continuous, categorical) in prediction. Assignments consist of small problems to familiarize students with theoretical concepts, and applications dealing with the analysis and interpretation of various data sets (soil, water pollution, atmospheric constituents, remote sensing) primarily using Matlab. No prior programming experience is required. Open to graduates. Open to undergraduates with consent from the instructor. 3-credit option includes midterm/final or student-developed project. 4-credit option requires both. Prerequisite: College-level introductory statistics.
Terms: given next year | Units: 3-4 | Grading: Letter (ABCD/NP)

ESS 244: Marine Ecosystem Modeling

This course will provide the practical background necessary to construct and implement a 2-dimensional (space and time) numerical model of a simple marine ecosystem. Instruction on computer programming, model design and parameterization, and model evaluation will be provided. Throughout the 10-week course, each student will develop and refine their own multi-component marine ecosystem model. Instructor consent required.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Arrigo, K. (PI)

ESS 246B: Atmosphere, Ocean, and Climate Dynamics: the Ocean Circulation (CEE 162I, CEE 262I, EARTHSYS 146B, EARTHSYS 246B, ESS 146B)

Introduction to the physics governing the circulation of the atmosphere and ocean and their control on climate with emphasis on the large-scale ocean circulation. This course will give an overview of the structure and dynamics of the major ocean current systems that contribute to the meridional overturning circulation, the transport of heat, salt, and biogeochemical tracers, and the regulation of climate. Topics include the tropical ocean circulation, the wind-driven gyres and western boundary currents, the thermohaline circulation, the Antarctic Circumpolar Current, water mass formation, atmosphere-ocean coupling, and climate variability. Prerequisites: EESS 146A or EESS 246A, or CEE 162D or CEE 262D, or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

ESS 251: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 151)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (EESS/ EARTHSYS 152/252). Prerequisites: BIO 43 and EESS 8 or equivalent.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

ESS 252: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 152)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (EESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

ESS 265: Advanced Geographic Information Systems (ESS 165)

Building on the Fundamentals of Geographic Information Systems course, this class delves deeper into geospatial analysis and mapping techniques. The class is heavily project-based and students are encouraged to bring their own research questions. Topics include topographic analysis, interpolation, spatial statistics, network analysis, and scripting using Python and Acrpy. All students are required to attend a weekly lab. ESS 164 or equivalent is a prerequisite.
Terms: Spr | Units: 4 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Lyons, E. (PI)

ESS 270: Analyzing land use in a globalized world

This is a graduate level course that examines the dynamics of land use in relation to the multiple dimensions of globalization. The objective is to understand and analyze how the expansion of global trade, the emergence of new global actors, and public and private regulations affect land use changes. Beyond getting a better understanding of the dynamics of land use change, the course will enable students to better understand how to effectively influence land use change, from different vantage points: government, NGO, information broker, corporate actor. The main emphasis is on tropical regions. Lectures introduce various topics related to theories, practical cases, and evaluation tools to better understand and analyze contemporary land use dynamics. Data analyses will be conducted in the lab section, based on case studies.
Terms: not given this year | Units: 3 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints