2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 28 results for: CME ; Currently searching spring courses. You can expand your search to include all quarters

CME 250: Introduction to Machine Learning

A Short course presenting the principles behind when, why, and how to apply modern machine learning algorithms. We will discuss a framework for reasoning about when to apply various machine learning techniques, emphasizing questions of over-fitting/under-fitting, regularization, interpretability, supervised/unsupervised methods, and handling of missing data. The principles behind various algorithms--the why and how of using them--will be discussed, while some mathematical detail underlying the algorithms--including proofs--will not be discussed. Unsupervised machine learning algorithms presented will include k-means clustering, principal component analysis (PCA), and independent component analysis (ICA). Supervised machine learning algorithms presented will include support vector machines (SVM), classification and regression trees (CART), boosting, bagging, and random forests. Imputation, the lasso, and cross-validation concepts will also be covered. The R programming language will be used for examples, though students need not have prior exposure to R. Prerequisite: undergraduate-level linear algebra and statistics; basic programming experience (R/Matlab/Python).
Terms: Spr | Units: 1
Instructors: Sun, C. (PI)

CME 251: Geometric and Topological Data Analysis (CS 233)

Mathematical and computational tools for the analysis of data with geometric content, such images, videos, 3D scans, GPS traces -- as well as for other data embedded into geometric spaces. Linear and non-linear dimensionality reduction techniques. Graph representations of data and spectral methods. The rudiments of computational topology and persistent homology on sampled spaces, with applications. Global and local geometry descriptors allowing for various kinds of invariances. Alignment, matching, and map/correspondence computation between geometric data sets. Annotation tools for geometric data. Geometric deep learning on graphs and sets. Function spaces and functional maps. Networks of data sets and joint learning for segmentation and labeling. Prerequisites: discrete algorithms at the level of CS161; linear algebra at the level of Math51 or CME103.
Terms: Win, Spr | Units: 3

CME 262: Imaging with Incomplete Information (CEE 260G, GEOPHYS 260G)

Statistical and computational methods for inferring images from incomplete data. Bayesian inference methods are used to combine data and quantify uncertainty in the estimate. Fast linear algebra tools are used to solve problems with many pixels and many observations. Applications from several fields but mainly in earth sciences. Prerequisites: Linear algebra and probability theory.
Terms: Spr | Units: 3-4

CME 291: Master's Research

Students require faculty sponsor. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit

CME 298: Probability and Stochastic Differential Equations for Applications (MATH 158)

Calculus of random variables and their distributions with applications. Review of limit theorems of probability and their application to statistical estimation and basic Monte Carlo methods. Introduction to Markov chains, random walks, Brownian motion and basic stochastic differential equations with some applications in science and/or engineering. Prerequisites: Math 53 and introductory probability (such as Stats 116 or Math 151).
Terms: Spr | Units: 4
Instructors: Adhikari, A. (PI)

CME 300Q: ICME QUALIFYING EXAMS WORKSHOP

Prepares ICME students for the qualifying exams by reviewing relevant course topics and problem solving strategies. Senior ICME students share experiences and lead discussions revolving around ICME core courses.
Terms: Spr | Units: 1 | Repeatable 2 times (up to 2 units total)

CME 308: Stochastic Methods in Engineering (MATH 228, MS&E 324)

The basic limit theorems of probability theory and their application to maximum likelihood estimation. Basic Monte Carlo methods and importance sampling. Markov chains and processes, random walks, basic ergodic theory and its application to parameter estimation. Discrete time stochastic control and Bayesian filtering. Diffusion approximations, Brownian motion and an introduction to stochastic differential equations. Examples and problems from various applied areas. Prerequisites: exposure to probability and background in analysis.
Terms: Spr | Units: 3
Instructors: Glynn, P. (PI)

CME 323: Distributed Algorithms and Optimization

The emergence of clusters of commodity machines with parallel processing units has brought with it a slew of new algorithms and tools. Many fields such as Machine Learning and Optimization have adapted their algorithms to handle such clusters. Topics include distributed and parallel algorithms for: Optimization, Numerical Linear Algebra, Machine Learning, Graph analysis, Streaming algorithms, and other problems that are challenging to scale on a commodity cluster. The class will focus on analyzing parallel and distributed programs, with some implementation using Apache Spark and TensorFlow. Recommended prerequisites: Discrete math at the level of CS 161 and programming at the level of CS 106A.
Terms: Spr | Units: 3

CME 364B: Convex Optimization II (EE 364B)

Continuation of 364A. Subgradient, cutting-plane, and ellipsoid methods. Decentralized convex optimization via primal and dual decomposition. Monotone operators and proximal methods; alternating direction method of multipliers. Exploiting problem structure in implementation. Convex relaxations of hard problems. Global optimization via branch and bound. Robust and stochastic optimization. Applications in areas such as control, circuit design, signal processing, and communications. Course requirements include project. Prerequisite: 364A.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints