2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 195 results for: ME

ME 1A: ME THEORY

ME 10N: Form and Function of Animal Skeletons

Preference to freshmen. The biomechanics and mechanobiology of the musculoskeletal system in human beings and other vertebrates on the level of the whole organism, organ systems, tissues, and cell biology. Field trips to labs.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Carter, D. (PI)

ME 12SC: Hands-on Jet Engines

How jet engines transformed the world through intercontinental travel causing internationalization in daily life. Competition driving improvements in fuel economy, engine lifetime, noise, and emissions.
Terms: Aut | Units: 2
Instructors: Eaton, J. (PI)

ME 17N: Robotics Imitating Nature

Preference to freshmen. The dream of constructing robots that duplicate the functional abilities of humans and/or other animals has been promulgated primarily by science fiction writers. But biological systems provide models for the designers of robots. Building electromechanical devices that perform locomotory and sensing functions similar to those of an animal as a way of learning about how biological systems function. Walking and running machines, and the problem of giving a robot the capability to respond to its environment.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Waldron, K. (PI)

ME 18Q: Teamology: Creative Teams and Individual Development

Preference to sophomores. Roles on a problem solving team that best suit individual creative characteristics. Two teams are formed for teaching experientially how to develop less conscious abilities from teammates creative in those roles. Reinforcement teams have members with similar personalities; problem solving teams are composed of people with maximally different personalities.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Wilde, D. (PI)

ME 21N: Renaissance Machine Design

Preference to freshmen. Technological innovations of the 1400s that accompanied the proliferation of monumental art and architecture by Brunelleschi, da Vinci, and others who designed machines and invented novel construction, fresco, and bronze-casting techniques. The social and political climate, from the perspective of a machine designer, that made possible and demanded engineering expertise from prominent artists. Hands-on projectsto provide a physical understanding of Renaissance-era engineering challenges and introduce the pleasure of creative engineering design. Technical background not required.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Cutkosky, M. (PI)

ME 25N: Global Warming and Climate Change: Fact or Fiction

Preference to freshmen. Scientific arguments concerning debates between the view that anthropogenic activities are not causing global warming versus the view that these activities are responsible for a global warming that results in significant climate change. Consequences of increased demand for energy. Prerequisites: high school physics, chemistry, and biology.
Terms: Win | Units: 3
Instructors: Bowman, C. (PI)

ME 26N: Think Like a Designer

Preference to freshmen. Techniques designers use to create innovative solutions across domains. Project-based. Emphasis is on approaches to problem identification and problem solving. Topics include need finding, structured brainstorming, synthesis, rapid prototyping, and visual communication. Field trips to a local design firm, a robotics lab, and a machining lab. The pleasures of creative design and hands-on development of tangible solutions.
Terms: Aut | Units: 3
Instructors: Banerjee, B. (PI)

ME 27SI: Needfinding for Underserved Populations

The heart of any design process resides in empathy with users and their needs. Working in the realm of public service may engage a population to which the designer might not have been exposed. How different needfinding techniques can help designers to understand users from underserved populations and inspire them to create products and services that serve user needs.
Terms: Spr | Units: 2

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible ideal flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Dimensional analysis and similarity. Flow in ducts. Boundary layer flows. Lift and drag. Lab experiment demonstrations. Prerequisites: ENGR 14 and 30.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints