2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
 Browseby subject... Scheduleview...

# 1 - 10 of 87 results for: all courses

## BIO 141:Biostatistics (STATS 141)

Introductory statistical methods for biological data: describing data (numerical and graphical summaries); introduction to probability; and statistical inference (hypothesis tests and confidence intervals). Intermediate statistical methods: comparing groups (analysis of variance); analyzing associations (linear and logistic regression); and methods for categorical data (contingency tables and odds ratio). Course content integrated with statistical computing in R.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-AQR | Grading: Letter or Credit/No Credit

## BIOHOPK 174H:Experimental Design and Probability (BIOHOPK 274H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on analysis of variance, when and how to use it, why it works, and how to interpret the results. Design of complex, but practical, asymmetrical experiments and environmental impact studies, and regression and analysis of covariance. Computer-based data analysis. Prerequisite: Biology core or consent of instructor.
Terms: Win, Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Watanabe, J. (PI)

## CME 100:Vector Calculus for Engineers (ENGR 154)

Computation and visualization using MATLAB. Differential vector calculus: analytic geometry in space, functions of several variables, partial derivatives, gradient, unconstrained maxima and minima, Lagrange multipliers. Introduction to linear algebra: matrix operations, systems of algebraic equations, methods of solution and applications. Integral vector calculus: multiple integrals in Cartesian, cylindrical, and spherical coordinates, line integrals, scalar potential, surface integrals, Green¿s, divergence, and Stokes¿ theorems. Examples and applications drawn from various engineering fields. Prerequisites: 10 units of AP credit (Calc BC with 4 or 5, or Calc AB with 5), or Math 41 and 42. Note: Students enrolled in section 100-02 and 100A-02 are required to attend the discussion section (section 03) on Thursdays 4:30-5:50pm.
Terms: Aut, Win | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 100A:Vector Calculus for Engineers, ACE

Students attend CME100/ENGR154 lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Enrollment by department permission only. Prerequisite: application at: http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Aut, Win | Units: 6 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 102:Ordinary Differential Equations for Engineers (ENGR 155A)

Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 102A:Ordinary Differential Equations for Engineers, ACE

Students attend CME102/ENGR155A lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section ( CME102) prior to submitting application at: http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Aut, Win, Spr | Units: 6 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 103:Introduction to Matrix Methods (EE 103)

Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets. Matrices, left and right inverses, QR factorization. Least- squares and model fitting, regularization and cross-validation, time-series prediction, and other examples. Constrained least-squares; applications to least-norm reconstruction, optimal control, and portfolio optimization. Newton methods and nonlinear least-squares. Prerequisites: MATH 51 or CME 100.
Terms: Aut | Units: 4-5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Boyd, S. (PI)

## CME 104:Linear Algebra and Partial Differential Equations for Engineers (ENGR 155B)

Linear algebra: matrix operations, systems of algebraic equations, Gaussian elimination, undetermined and overdetermined systems, coupled systems of ordinary differential equations, eigensystem analysis, normal modes. Fourier series with applications, partial differential equations arising in science and engineering, analytical solutions of partial differential equations. Numerical methods for solution of partial differential equations: iterative techniques, stability and convergence, time advancement, implicit methods, von Neumann stability analysis. Examples and applications from various engineering fields. Prerequisite: CME 102/ ENGR 155A.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 104A:Linear Algebra and Partial Differential Equations for Engineers, ACE

Students attend CME104/ENGR155B lectures with additional recitation sessions; two to four hours per week, emphasizing engineering mathematical applications and collaboration methods. Prerequisite: students must be enrolled in the regular section ( CME102) prior to submittingapplication at: http://soe.stanford.edu/current_students/edp/programs/ace.html
Terms: Spr | Units: 6 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

## CME 106:Introduction to Probability and Statistics for Engineers (ENGR 155C)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100/ENGR154 or MATH 51 or 52.
Terms: Win, Sum | Units: 4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
 Autumn Winter Spring Summer
updating results...
number of units
 1 unit 2 units 3 units 4 units 5 units >5 units
updating results...
time offered
 early morning (before 10am) morning (10am-12pm) lunchtime (12pm-2pm) afternoon (2pm-5pm) evening (after 5pm)
updating results...
days
 Monday Tuesday Wednesday Thursday Friday Saturday Sunday
updating results...
UG Requirements (GERs)
 DB:Hum DB:Math DB:SocSci DB:EngrAppSci DB:NatSci EC:EthicReas EC:GlobalCom EC:AmerCul EC:Gender IHUM1 IHUM2 IHUM3 Language Writing 1 Writing 2 Writing SLE WAY-A-II WAY-AQR WAY-CE WAY-ED WAY-ER WAY-FR WAY-SI WAY-SMA
updating results...
component
 Lecture (LEC) Seminar (SEM) Discussion Section (DIS) Laboratory (LAB) Lab Section (LBS) Activity (ACT) Case Study (CAS) Colloquium (COL) Workshop (WKS) Independent Study (INS) Intro Dial, Sophomore (IDS) Intro Sem, Freshman (ISF) Intro Sem, Sophomore (ISS) Internship (ITR) Arts Intensive Program (API) Language (LNG) Practicum (PRA) Practicum (PRC) Research (RES) Sophomore College (SCS) Thesis/Dissertation (T/D)
updating results...
career