2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

51 - 60 of 83 results for: all courses

MATH 145: Algebraic Geometry

Hilbert's nullstellensatz, complex affine and projective curves, Bezout's theorem, the degree/genus formula, blow-up, Riemann-Roch theorem. Prerequisites: 120, and 121 or knowledge of fraction fields. Recommended: familiarity with surfaces equivalent to 143, 146, 147, or 148.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 146: Analysis on Manifolds

Differentiable manifolds, tangent space, submanifolds, implicit function theorem, differential forms, vector and tensor fields. Frobenius' theorem, DeRham theory. Prerequisite: 62CM or 52 and familiarity with linear algebra and analysis arguments at the level of 113 and 115 respectively.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 147: Differential Topology

Smooth manifolds, transversality, Sards' theorem, embeddings, degree of a map, Borsuk-Ulam theorem, Hopf degree theorem, Jordan curve theorem. Prerequisite: 115 or 171.
Terms: not given this year | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 148: Algebraic Topology

Fundamental group, covering spaces, Euler characteristic, homology, classification of surfaces, knots. Prerequisite: 109 or 120.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 151: Introduction to Probability Theory

Counting; axioms of probability; conditioning and independence; expectation and variance; discrete and continuous random variables and distributions; joint distributions and dependence; central limit theorem and laws of large numbers. Prerequisite: 52 or consent of instructor.
Terms: not given this year | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 152: Elementary Theory of Numbers

Euclid's algorithm, fundamental theorems on divisibility; prime numbers; congruence of numbers; theorems of Fermat, Euler, Wilson; congruences of first and higher degrees; quadratic residues; introduction to the theory of binary quadratic forms; quadratic reciprocity; partitions.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 154: Algebraic Number Theory

Properties of number fields and Dedekind domains, quadratic and cyclotomic fields, applications to some classical Diophantine equations. Prerequisites: 120 and 121, especially modules over principal ideal domains and Galois theory of finite fields.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 155: Analytic Number Theory

Topics in analytic number theory such as the distribution of prime numbers, the prime number theorem, twin primes and Goldbach's conjecture, the theory of quadratic forms, Dirichlet's class number formula, Dirichlet's theorem on primes in arithmetic progressions, and the fifteen theorem. Prerequisite: 152, or familiarity with the Euclidean algorithm, congruences, residue classes and reduced residue classes, primitive roots, and quadratic reciprocity.
Terms: not given this year | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 161: Set Theory

Informal and axiomatic set theory: sets, relations, functions, and set-theoretical operations. The Zermelo-Fraenkel axiom system and the special role of the axiom of choice and its various equivalents. Well-orderings and ordinal numbers; transfinite induction and transfinite recursion. Equinumerosity and cardinal numbers; Cantor's Alephs and cardinal arithmetic. Open problems in set theory. Prerequisite: students should be comfortable doing proofs.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 162: Philosophy of Mathematics (PHIL 162, PHIL 262)

(Graduate students register for PHIL 262.) General survey of the philosophy of mathematics, focusing on epistemological issues. Includes survey of some basic concepts (proof, axiom, definition, number, set); mind-bending theorems about the limits of our current mathematical knowledge, such as Gödel's Incompleteness Theorems, and the independence of the continuum hypothesis from the current axioms of set theory; major philosophical accounts of mathematics: Logicism, Intuitionism, Hilbert's program, Quine's empiricism, Field's program, Structuralism; concluding with a discussion of Eugene Wigner's `The Unreasonable Effectiveness of Mathematics in the Natural Sciences'. Students won't be expected to prove theorems or complete mathematical exercises. However, includes some material of a technical nature. Prerequisite: PHIL150 or consent of instructor.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints