2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

31 - 40 of 78 results for: all courses

MATH 104: Applied Matrix Theory

Linear algebra for applications in science and engineering: orthogonality, projections, spectral theory for symmetric matrices, the singular value decomposition, the QR decomposition, least-squares, the condition number of a matrix, algorithms for solving linear systems. ( Math 113 offers a more theoretical treatment of linear algebra.) Prerequisites: Math 51 and programming experience on par with CS106nnMath 104 and EE103/CME103 cover complementary topics in applied linear algebra. The focus of Math 104 is on algorithms and concepts; the focus of EE103 is on a few linear algebra concepts, and many applications.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit
Instructors: Ying, L. (PI)

MATH 106: Functions of a Complex Variable

Complex numbers, analytic functions, Cauchy-Riemann equations, complex integration, Cauchy integral formula, residues, elementary conformal mappings. ( Math 116 offers a more theoretical treatment.) Prerequisite: 52.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit
Instructors: Zaman, A. (PI)

MATH 108: Introduction to Combinatorics and Its Applications

Topics: graphs, trees (Cayley's Theorem, application to phylogony), eigenvalues, basic enumeration (permutations, Stirling and Bell numbers), recurrences, generating functions, basic asymptotics. Prerequisites: 51 or equivalent.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit
Instructors: Manners, F. (PI)

MATH 109: Applied Group Theory

Applications of the theory of groups. Topics: elements of group theory, groups of symmetries, matrix groups, group actions, and applications to combinatorics and computing. Applications: rotational symmetry groups, the study of the Platonic solids, crystallographic groups and their applications in chemistry and physics. Honors math majors and students who intend to do graduate work in mathematics should take 120. WIM.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Thorner, J. (PI)

MATH 110: Applied Number Theory and Field Theory

Number theory and its applications to modern cryptography. Topics: congruences, finite fields, primality testing and factorization, public key cryptography, error correcting codes, and elliptic curves, emphasizing algorithms. WIM.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 113: Linear Algebra and Matrix Theory

Algebraic properties of matrices and their interpretation in geometric terms. The relationship between the algebraic and geometric points of view and matters fundamental to the study and solution of linear equations. Topics: linear equations, vector spaces, linear dependence, bases and coordinate systems; linear transformations and matrices; similarity; eigenvectors and eigenvalues; diagonalization. ( Math 104 offers a more application-oriented treatment.)
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 115: Functions of a Real Variable

The development of real analysis in Euclidean space: sequences and series, limits, continuous functions, derivatives, integrals. Basic point set topology. Honors math majors and students who intend to do graduate work in mathematics should take 171. Prerequisite: 51.
Terms: Aut, Spr | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 116: Complex Analysis

Analytic functions, Cauchy integral formula, power series and Laurent series, calculus of residues and applications, conformal mapping, analytic continuation, introduction to Riemann surfaces, Fourier series and integrals. ( Math 106 offers a less theoretical treatment.) Prerequisites: 52, and 115 or 171.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 118: Mathematics of Computation

Notions of analysis and algorithms central to modern scientific computing: continuous and discrete Fourier expansions, the fast Fourier transform, orthogonal polynomials, interpolation, quadrature, numerical differentiation, analysis and discretization of initial-value and boundary-value ODE, finite and spectral elements. Prerequisites: MATH 51 and 53.
Terms: Win | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 120: Groups and Rings

Recommended for Mathematics majors and required of honors Mathematics majors. Similar to 109 but altered content and more theoretical orientation. Groups acting on sets, examples of finite groups, Sylow theorems, solvable and simple groups. Fields, rings, and ideals; polynomial rings over a field; PID and non-PID. Unique factorization domains. WIM.
Terms: Aut, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints