2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 104 results for: PHYSICS

PHYSICS 152: Introduction to Particle Physics I (PHYSICS 252)

Elementary particles and the fundamental forces. Quarks and leptons. The mediators of the electromagnetic, weak and strong interactions. Interaction of particles with matter; particle acceleration, and detection techniques. Symmetries and conservation laws. Bound states. Decay rates. Cross sections. Feynman diagrams. Introduction to Feynman integrals. The Dirac equation. Feynman rules for quantum electrodynamics and for chromodynamics. Undergraduates register for PHYSICS 152. Graduate students register for PHYSICS 252. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 130. Pre- or corequisite: PHYSICS 131.
Terms: Spr | Units: 3

PHYSICS 160: Introduction to Stellar and Galactic Astrophysics (PHYSICS 260)

Observed characteristics of stars and the Milky Way galaxy. Physical processes in stars and matter under extreme conditions. Structure and evolution of stars from birth to death. White dwarfs, planetary nebulae, supernovae, neutron stars, pulsars, binary stars, x-ray stars, and black holes. Galactic structure, interstellar medium, molecular clouds, HI and HII regions, star formation, and element abundances. Undergraduates register for PHYSICS 160. Graduate students register for PHYSICS 260. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 121.
Terms: Win | Units: 3

PHYSICS 161: Introduction to Cosmology and Extragalactic Astrophysics (PHYSICS 261)

What do we know about the physical origins, content, and evolution of the Universe -- and how do we know it? Students learn how cosmological distances and times, and the geometry and expansion of space, are described and measured. Composition of the Universe. Origin of matter and the elements. Observational evidence for dark matter and dark energy. Thermal history of the Universe, from inflation to the present. Emergence of large-scale structure from quantum perturbations in the early Universe. Astrophysical tools used to learn about the Universe. Big open questions in cosmology. Undergraduates register for Physics 161. Graduates register for Physics 261. (Graduate students will be required to complete additional assignments in a format determined by the instructor.) Prerequisite: PHYSICS 121 or equivalent.
Terms: Spr | Units: 3

PHYSICS 170: Thermodynamics, Kinetic Theory, and Statistical Mechanics I

Basic probability and statistics for random processes such as random walks. The derivation of laws of thermodynamics from basic postulates; the determination of the relationship between atomic substructure and macroscopic behavior of matter. Temperature; equations of state, heat, internal energy, equipartition; entropy, Gibbs paradox; equilibrium and reversibility; heat engines; applications to various properties of matter; absolute zero and low-temperature phenomena. Distribution functions, fluctuations, the partition function for classical and quantum systems, irreversible processes. Pre- or corequisite: PHYSICS 130.
Terms: Aut | Units: 4

PHYSICS 171: Thermodynamics, Kinetic Theory, and Statistical Mechanics II

Mean-field theory of phase transitions; critical exponents. Ferromagnetism, the Ising model. The renormalization group. Dynamics near equilibrium: Brownian motion, diffusion, Boltzmann equations. Other topics at discretion of instructor. Prerequisite: PHYSICS 170. Recommended pre- or corequisite: PHYSICS 130.
Terms: Win | Units: 4

PHYSICS 172: Solid State Physics (APPPHYS 272)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3

PHYSICS 190: Independent Research and Study

Undergraduate research in experimental or theoretical physics under the supervision of a faculty member. Prerequisites: superior work as an undergraduate Physics major and consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

PHYSICS 199: The Physics of Energy and Climate Change

Terms: Spr | Units: 3

PHYSICS 205: Senior Thesis Research

Long-term experimental or theoretical project and thesis in Physics under supervision of a faculty member. Planning of the thesis project is recommended to begin as early as middle of the junior year. Successful completion of a senior thesis requires a minimum of 3 units for a letter grade completed during the senior year, along with the other formal thesis and physics major requirements. Students doing research for credit prior to senior year should sign up for Physics 190. Prerequisites: superior work as an undergraduate Physics major and approval of the thesis application.
Terms: Aut, Win, Spr, Sum | Units: 1-12 | Repeatable for credit

PHYSICS 210: Advanced Mechanics (PHYSICS 110)

Terms: Aut | Units: 3-4
Instructors: Hartnoll, S. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints