2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 56 results for: CSI::health

BIO 109A: Chronic Disease I: Applications of Novel Advances in Biology and Biotechnology

We have come a long way in developing therapies for chronic diseases. However, a gap remains between the current solutions and our ability to fully address these diseases. This course provides an overview of: (1) the underlying biology of many of these diseases and (2) the applications of novel advances in basic science and biotechnology to generate more effective therapies. There will be guest lectures from prominent leaders in academia and industry, and we encourage both students and speakers to seek opportunities to collaborate. No hard prerequisites, though a basic understanding of biology and willingness to learn novel concepts will help.
Last offered: Winter 2023 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOE 273: Biodesign for Digital Health (MED 273)

Health care is facing significant cross-industry challenges and opportunities created by a number of factors, including the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables. Simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from welln more »
Health care is facing significant cross-industry challenges and opportunities created by a number of factors, including the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables. Simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one approach innovation in digital health to address these health care challenges while ensuring the greatest chance of success? At Stanford Biodesign, we believe that innovation is a process that can be learned, practiced, and perfected; and, it starts with an unmet need. In Biodesign for Digital Health, students will learn about digital health and the Biodesign needs-driven innovation process from over 50 industry experts. Over the course of 10weeks, these speakers will join the teaching team in a dynamic classroom environment that includes lectures, panel discussions, and breakout sessions. These experts represent startups, corporations, venture capital firms, accelerators, research labs, healthcare providers, and more. Student teams will take actual digital and mobile health challenges and learn how to apply Biodesign innovation principles to research and evaluate needs, ideate solutions, and objectively assess them against key criteria for satisfying the needs. Teams take a hands-on approach with the support of need coaches and other mentors. On the final day of class, teams present to a panel of digital health experts and compete for project extension funding. Friday section will be used for team projects and for scheduled workshops. Limited enrollment for this course. Students should submit their application online via: https://stanforduniversity.qualtrics.com/jfe/form/SV_dnY6nvUXMYeILkO
Terms: Aut | Units: 3-4

BIOE 374A: Biodesign Innovation: Needs Finding and Concept Creation (ME 368A, MED 272A)

In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and int more »
In this two-quarter course series ( BIOE 374A/B, MED 272A/B, ME 368A/B, OIT 384/5), multidisciplinary student teams identify real-world unmet healthcare needs, invent new health technologies to address them, and plan for their implementation into patient care. During the first quarter (winter), students select and characterize an important unmet healthcare problem, validate it through primary interviews and secondary research, and then brainstorm and screen initial technology-based solutions. In the second quarter (spring), teams select a lead solution and move it toward the market through prototyping, technical re-risking, strategies to address healthcare-specific requirements (regulation, reimbursement), and business planning. Final presentations in winter and spring are made to a panel of prominent health technology experts and/or investors. Class sessions include faculty-led instruction and case studies, coaching sessions by industry specialists, expert guest lecturers, and interactive team meetings. Enrollment is by application only, and students are required to participate in both quarters of the course. Visit http://biodesign.stanford.edu/programs/stanford-courses/biodesign-innovation.html to access the application, examples of past projects, and student testimonials. More information about Stanford Biodesign, which has led to the creation of 50 venture-backed healthcare companies and has helped hundreds of student launch health technology careers, can be found at http://biodesign.stanford.edu/.
Terms: Win | Units: 4

BIOE 393: Bioengineering Departmental Research Colloquium

Bioengineering department labs at Stanford present recent research projects and results. Guest lecturers. Topics include applications of engineering to biology, medicine, biotechnology, and medical technology, including biodesign and devices, molecular and cellular engineering, regenerative medicine and tissue engineering, biomedical imaging, and biomedical computation.
Terms: Aut | Units: 1 | Repeatable for credit

BIOMEDIN 215: Data Science for Medicine

The widespread adoption of electronic health records (EHRs) has created a new source of big data namely, the record of routine clinical practice as a by-product of care. This graduate class will teach you how to use EHRs and other patient data to discover new clinical knowledge and improve healthcare. Upon completing this course, you should be able to: differentiate between and give examples of categories of research questions and the study designs used to address them, describe common healthcare data sources and their relative advantages and limitations, extract and transform various kinds of clinical data to create analysis-ready datasets, design and execute an analysis of a clinical dataset based on your familiarity with the workings, applicability, and limitations of common statistical methods, evaluate and criticize published research using your knowledge of 1-4 to generate new research ideas and separate hype from reality. Prerequisites: CS 106A or equivalent, STATS 60 or equivalent. Recommended: STATS 216, CS 145, STATS 305NOTE: For students in the Department of Biomedical Data Science Program, this core course MUST be taken as a letter grade only.
Terms: Aut | Units: 3

BIOMEDIN 256: Economics of Health and Medical Care (BIOMEDIN 156, ECON 126, HRP 256)

Institutional, theoretical, and empirical analysis of the problems of health and medical care. Topics: demand for medical care and medical insurance; institutions in the health sector; economics of information applied to the market for health insurance and for health care; economics of health care labor markets and health care production; and economic epidemiology. Graduate students with research interests should take ECON 249. Prerequisites: ECON 50 and either ECON 102A or STATS 116 or the equivalent. Recommended: ECON 51.
Terms: Spr | Units: 5

CHEMENG 459: Frontiers in Interdisciplinary Biosciences (BIO 459, BIOC 459, BIOE 459, CHEM 459, PSYCH 459)

Students register through their affiliated department; otherwise register for CHEMENG 459. For specialists and non-specialists. Sponsored by the Stanford BioX Program. Three seminars per quarter address scientific and technical themes related to interdisciplinary approaches in bioengineering, medicine, and the chemical, physical, and biological sciences. Leading investigators from Stanford and the world present breakthroughs and endeavors that cut across core disciplines. Pre-seminars introduce basic concepts and background for non-experts. Registered students attend all pre-seminars; others welcome. See http://biox.stanford.edu/courses/459.html. Recommended: basic mathematics, biology, chemistry, and physics.
Last offered: Spring 2020 | Repeatable for credit

CSB 240B: A Practical Approach to Drug Discover and Development

(Continuation of 240A) Advancing a drug from discovery of a therapeutic target to human trials and commercialization. Topics include: high throughput assay development, compound screening, lead optimization, protecting intellectual property, toxicology testing, regulatory issues, assessment of clinical need, defining the market, conducting clinical trials, project management, and commercialization issues, including approach to licensing and raising capital. Maximum units are available by taking an additional contact hour. Prerequisite: 240A.
Last offered: Spring 2023

CSB 242: Drug Discovery and Development Seminar Series

The scientific principles and technologies involved in making the transition from a basic biological observation to the creation of a new drug emphasizing molecular and genetic issues. Prerequisite: biochemistry, chemistry, or bioengineering.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 2 times (up to 2 units total)

CSB 245: Economics of Biotechnology

Focuses on translation of promising research discovery into marketed drugs and the integration of scientific method, clinical needs assessment, clinical and regulatory strategy, market analysis, economic considerations, and the influence of the healthcare economic ecosystem necessary for successful translation. Explores the economic perspectives of various stakeholders--patients, providers, payers, biotechnology and pharmaceutical companies, FDA, and financial markets--and how they influence drug development.
Terms: Spr | Units: 2
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints