2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

91 - 100 of 129 results for: all courses

ENGR 105: Feedback Control Design

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. Root-locus and frequency response design techniques. Examples from a variety of fields. Some use of computer aided design with MATLAB. Prerequisites: Dynamics systems ( EE 102B or ME 161), and ordinary differential equations ( CME 102 or Math 53). This course will include synchronous teaching sessions, but will be recorded to allow asynchronous participation
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ENGR 120: Mass and Energy Transport in Porous Media (ENERGY 120)

Engineering topics in mass and energy transport in porous media relevant to energy systems. Mass, momentum and energy conservation equations in porous structures. Single phase and multiphase flow through porous media. Gas laws. Introduction to thermodynamics. Chemical, physical, and thermodynamic properties of liquids and gases in the subsurface.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-FR, WAY-SMA

GEOPHYS 60N: Man versus Nature: Coping with Disasters Using Space Technology (EE 60N)

Preference to freshman. Natural hazards, earthquakes, volcanoes, floods, hurricanes, and fires, and how they affect people and society; great disasters such as asteroid impacts that periodically obliterate many species of life. Scientific issues, political and social consequences, costs of disaster mitigation, and how scientific knowledge affects policy. How spaceborne imaging technology makes it possible to respond quickly and mitigate consequences; how it is applied to natural disasters; and remote sensing data manipulation and analysis. GER:DB-EngrAppSci
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Zebker, H. (PI)

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR
Instructors: Beroza, G. (PI)

GEOPHYS 190: Near-Surface Geophysics: Imaging Groundwater Systems

Introduction to geophysical methods that can be used for imaging and characterizing groundwater systems. Recurring periods of drought and flooding in California have led state and local water agencies to search for ways to capture flood water and use it to recharge (refill) the over-pumped groundwater systems. The course this year will be structured around analyzing a new geophysical data set to identify optimal locations for recharge. The data set: 26,000 kilometers of electromagnetic data, acquired with a helicopter-deployed system, which image the groundwater systems of the Valley to a depth of ~300 m. We will analyze these data to find optimal sites for recharge by mapping out the variation in sediment type and identifying pathways for flow. Pre-requisite: CME 100 or Math 51, or co-registration in either.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci

MATSCI 81N: Bioengineering Materials to Heal the Body

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.
Last offered: Spring 2023 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 142: Quantum Mechanics of Nanoscale Materials

Introduction to quantum mechanics and its application to the properties of materials. No prior background beyond a working knowledge of calculus and high school physics is presumed. Topics include: The Schrodinger equation and applications to understanding of the properties of quantum dots, semiconductor heterostructures, nanowires, and bulk solids. Tunneling processes and applications to nanoscale devices; the scanning tunneling microscope, and quantum cascade lasers. Simple models for the electronic properties and band structure of materials including semiconductors, insulators, and metals, and applications to semiconductor devices. An introduction to quantum computing. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 157)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 143: Materials Structure and Characterization

This course introduces the theory and application of characterization techniques used to examine the atomic structure of materials. Students will learn to classify the structure of materials such as semiconductors, ceramics, and metals according to the principles of crystallography. Characterization methods commonly used in academic and industrial research, including X-ray diffraction and electron microscopy, will be demonstrated along with their application to the analysis of nanostructures. Prerequisites: ENGR 50 or equivalent introductory materials science course.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and geothermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Chueh, W. (PI)

MATSCI 145: Kinetics of Materials Synthesis

The science of synthesis of nanometer scale materials. Examples including solution phase synthesis of nanoparticles, the vapor-liquid-solid approach to growing nanowires, formation of mesoporous materials from block-copolymer solutions, and formation of photonic crystals. Relationship of the synthesis phenomena to the materials science driving forces and kinetic mechanisms. Materials science concepts including capillarity, Gibbs free energy, phase diagrams, and driving forces. Prerequisites: MatSci 144. (Formerly 155)
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints