2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

111 - 120 of 129 results for: all courses

MATSCI 198: Mechanical Properties of Materials (MATSCI 208)

Introduction to the mechanical behavior of solids, emphasizing the relationships between microstructure and mechanical properties. Elastic, anelastic, and plastic properties of materials. The relations between stress, strain, strain rate, and temperature for plastically deformable solids. Application of dislocation theory to strengthening mechanisms in crystalline solids. The phenomena of creep, fracture, and fatigue and their controlling mechanisms. Prerequisites: MATSCI 193/203. Undergraduates register for 198 for 4 units; graduates register for 208 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

MATSCI 199: Electronic and Optical Properties of Solids (MATSCI 209)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: MATSCI 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ME 70: Introductory Fluids Engineering

Elements of fluid mechanics as applied to engineering problems. Equations of motion for incompressible flow. Hydrostatics. Control volume laws for mass, momentum, and energy. Bernoulli equation. Differential equations of fluid flow. Euler equations. Dimensional analysis and similarity. Internal flows. Introductory external boundary layer flows. Introductory lift and drag. ENGR14 and ME30 required.
Terms: Win, Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci

ME 80: Mechanics of Materials

Mechanics of materials and deformation of structural members. Topics include stress and deformation analysis under axial loading, torsion and bending, column buckling and pressure vessels. Introduction to stress transformation and multiaxial loading. Prerequisite: ENGR 14.
Terms: Aut, Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

ME 104: Mechanical Systems Design

How to design mechanical systems through iterative application of intuition, brainstorming, analysis, computation and prototype testing. Design of custom mechanical components, selection of common machine elements, and selection of electric motors and transmission elements to meet performance, efficiency and reliability goals. Emphasis on high-performance systems. Independent and team-based design projects. Prerequisites: PHYSICS 41; ENGR 14; ME 80; ME 102; ME 103 or 203. Prerequisites strictly enforced. Must have PRL pass. Must attend lecture. Recommended: ENGR 15; CS 106A; ME 128 or ME 318.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 131: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: ME70, ME30 (formerly listed at ENGR30). Recommended: intermediate calculus, ordinary differential equations.This course was formerly ME131A. Students who have already taken ME131A should not enroll in this course.
Terms: Aut, Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 161: Dynamic Systems, Vibrations and Control

Modeling, analysis, and measurement of mechanical and electromechanical dynamic systems. Closed form solutions of ordinary differential equations governing the behavior of single and multiple-degree-of-freedom systems. Stability, forcing, resonance, and control system design. Prerequisites: Ordinary differential equations ( CME 102 or MATH 53), linear algebra ( CME 104 or MATH 53) and dynamics (E 15) are recommended.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci

MS&E 111: Introduction to Optimization (ENGR 62, MS&E 211)

Formulation and computational analysis of linear, quadratic, and other convex optimization problems. Applications in machine learning, operations, marketing, finance, and economics. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR

MS&E 120: Introduction to Probability

Probability is the foundation behind many important disciplines including statistics, machine learning, risk analysis, stochastic modeling and optimization. This course provides an in-depth undergraduate-level introduction to fundamental ideas and tools of probability. Topics include: the foundations (sample spaces, random variables, probability distributions, conditioning, independence, expectation, variance), a systematic study of the most important univariate and multivariate distributions (Normal, Multivariate Normal, Binomial, Poisson, etc...), as well as a peek at some limit theorems (basic law of large numbers and central limit theorem) and, time permitting, some elementary markov chain theory. Prerequisite: CME 100 or MATH 51.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR

MS&E 121: Introduction to Stochastic Modeling

Stochastic processes and models in operations research. Discrete and continuous time parameter Markov chains. Queuing theory, inventory theory, simulation. Prerequisite: 120 or equivalent.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints