2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 12 results for: EARTHSYS

EARTHSYS 12SC: Environmental and Geological Field Studies in the Rocky Mountains (ESS 12SC, GS 12SC)

The ecologically and geologically diverse Rocky Mountain area is being strongly impacted by changing land use patterns, global and regional environmental change, and societal demands for energy and natural resources. This field program emphasizes coupled environmental and geological problems in the Rocky Mountains, covering a broad range of topics including the geologic origin of the American West from three billion years ago to the present; paleoclimatology and the glacial history of this mountainous region; the long- and short-term carbon cycle and global climate change; and environmental issues in the American West related to changing land-use patterns and increased demand for its abundant natural resources. In addition to the science aspects of this course we will also investigate the unique western culture of the area particularly in regards to modern ranching and outfitting in the American West. These broad topics are integrated into a coherent field-study as we examine earth/ environmental science-related questions in three different settings: 1) the three-billion-year-old rocks and the modern glaciers of the Wind River Mountains of Wyoming; 2) the sediments in the adjacent Wind River basin that host abundant gas and oil reserves and also contain the long-term climate history of this region; and 3) the volcanic center of Yellowstone National Park and the mountainous region of Teton National Park. Students will complete six assignments based upon field exercises, working in small groups to analyze data and prepare reports and maps. Lectures will be held in the field prior to and after fieldwork. The students will read two required books prior to this course that will be discussed on the trip.nnNote: This course involves one week of backpacking in the Wind Rivers and hiking while staying in cabins near Jackson Hole, Wyoming. Students must arrive in Salt Lake City on Monday, September 4. (Hotel lodging will be provided for the night of September 4, and thereafter students will travel as a Sophomore College group.) We will return to campus on Friday, September 22.
Terms: Sum | Units: 2

EARTHSYS 16SC: Water and Power in the Pacific Northwest: The Columbia River (CEE 17SC, ENERGY 12SC, POLISCI 14SC)

This seminar will explore the nature of and coupling between water and energy resources in the Pacific Northwest, using the Columbia River as our case study. We will explore the hydrologic, meteorologic, and geologic basis of water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the West. The Columbia River and its watershed provide a revealing prototype for examining these issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it provides a substantial fraction of the electrical energy produced in the Northwest (the Grand Coulee dam powerhouse on the Columbia is the largest-capacity hydropower facility in the US), it is a major bulk commodity transportation link to the interior West via its barge navigation system, it provides the water diversions supporting a large area of irrigated agriculture in Washington and Idaho, and its watershed is home to significant sources of solar and wind energy. We will use the Columbia to study water and energy resources, and especially their coupling, in the context of rapid climate change, ecosystem impacts, economics, and public policy. We will begin with a week of classroom study and discussion on campus, preparing for the field portion of the seminar. We will then travel to the Columbia basin, spending approximately 10 days visiting a number of water and energy facilities across the watershed, e.g., solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; an irrigation project; operation centers; and offices of regulatory agencies. We will meet with relevant policy experts and public officials, along with some of the stakeholders in the basin. Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the coupling between water and energy resources in the Northwest. The seminar will culminate in presentations on these analyses. Travel expenses during the seminar will be provided (except incidentals) by the Bill Lane Center for the American West and Sophomore College.
Terms: Sum | Units: 2

EARTHSYS 41N: The Global Warming Paradox

Preference to freshman. Focus is on the complex climate challenges posed by the substantial benefits of energy consumption, including the critical tension between the enormous global demand for increased human well-being and the negative climate consequences of large-scale emissions of carbon dioxide. Topics include: Earth¿s energy balance; detection and attribution of climate change; the climate response to enhanced greenhouse forcing; impacts of climate change on natural and human systems; and proposed methods for curbing further climate change. Sources include peer-reviewed scientific papers, current research results, and portrayal of scientific findings by the mass media and social networks.
Terms: Aut, Sum | Units: 3 | UG Reqs: WAY-SMA

EARTHSYS 179S: Seminar: Issues in Environmental Science, Technology and Sustainability (CEE 179S, CEE 279S, ESS 179S)

Invited faculty, researchers and professionals share their insights and perspectives on a broad range of environmental and sustainability issues. Students critique seminar presentations and associated readings.
Terms: Sum | Units: 1-2 | Repeatable 2 times (up to 4 units total)

EARTHSYS 199: Honors Program in Earth Systems

Honors Program in Earth Systems
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: Ardoin, N. (PI) ; Arrigo, K. (PI) ; Asner, G. (PI) ; Block, B. (PI) ; Boggs, C. (PI) ; Boucher, A. (PI) ; Caldwell, M. (PI) ; Casciotti, K. (PI) ; Chamberlain, P. (PI) ; Daily, G. (PI) ; Davis, J. (PI) ; Denny, M. (PI) ; Diffenbaugh, N. (PI) ; Dirzo, R. (PI) ; Dunbar, R. (PI) ; Dunn, D. (PI) ; Durham, W. (PI) ; Egger, A. (PI) ; Ernst, W. (PI) ; Falcon, W. (PI) ; Fendorf, S. (PI) ; Field, C. (PI) ; Francis, C. (PI) ; Frank, Z. (PI) ; Freyberg, D. (PI) ; Fukami, T. (PI) ; Gerritsen, M. (PI) ; Gilly, W. (PI) ; Gordon, D. (PI) ; Gorelick, S. (PI) ; Goulder, L. (PI) ; Hadly, E. (PI) ; Hayden, T. (PI) ; Hecker, S. (PI) ; Hilley, G. (PI) ; Ingle, J. (PI) ; Kennedy, D. (PI) ; Kennedy, D. (PI) ; Kennedy, J. (PI) ; Knight, R. (PI) ; Koseff, J. (PI) ; Kovscek, A. (PI) ; Lambin, E. (PI) ; Litvak, L. (PI) ; Lobell, D. (PI) ; Long, S. (PI) ; Masters, G. (PI) ; Matson, P. (PI) ; Micheli, F. (PI) ; Monismith, S. (PI) ; Mooney, H. (PI) ; Naylor, R. (PI) ; Orr, F. (PI) ; Palumbi, S. (PI) ; Payne, J. (PI) ; Peay, K. (PI) ; Pringle, J. (PI) ; Rajaratnam, B. (PI) ; Root, T. (PI) ; Schneider, S. (PI) ; Schoolnik, G. (PI) ; Seto, K. (PI) ; Somero, G. (PI) ; Sweeney, J. (PI) ; Switzer, P. (PI) ; Tabazadeh, A. (PI) ; Thomas, L. (PI) ; Thompson, B. (PI) ; Victor, D. (PI) ; Vitousek, P. (PI) ; Walbot, V. (PI) ; Watanabe, J. (PI) ; Welander, P. (PI) ; Weyant, J. (PI) ; Wiederkehr, S. (PI) ; Woodward, J. (PI) ; Zoback, M. (PI)

EARTHSYS 250: Directed Research

Independent research related to student's primary track, carried out after the junior year, during the summer, and/or during the senior year. Student develops own project with faculty supervision. 10-15 page thesis. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: Ardoin, N. (PI) ; Arrigo, K. (PI) ; Asner, G. (PI) ; Block, B. (PI) ; Boggs, C. (PI) ; Boucher, A. (PI) ; Cain, B. (PI) ; Caldwell, M. (PI) ; Casciotti, K. (PI) ; Chamberlain, P. (PI) ; Curran, L. (PI) ; Daily, G. (PI) ; Davis, J. (PI) ; Denny, M. (PI) ; Diffenbaugh, N. (PI) ; Dirzo, R. (PI) ; Dunbar, R. (PI) ; Durham, W. (PI) ; Egger, A. (PI) ; Ehrlich, P. (PI) ; Ernst, W. (PI) ; Falcon, W. (PI) ; Fendorf, S. (PI) ; Field, C. (PI) ; Francis, C. (PI) ; Frank, Z. (PI) ; Freyberg, D. (PI) ; Gardner, C. (PI) ; Gerritsen, M. (PI) ; Gilly, W. (PI) ; Gordon, D. (PI) ; Gorelick, S. (PI) ; Goulder, L. (PI) ; Hadly, E. (PI) ; Hayden, T. (PI) ; Hilley, G. (PI) ; Ingle, J. (PI) ; Jamieson, A. (PI) ; Jones, J. (PI) ; Kennedy, D. (PI) ; Kennedy, D. (PI) ; Kennedy, J. (PI) ; Knight, R. (PI) ; Koseff, J. (PI) ; Kovscek, A. (PI) ; Lambin, E. (PI) ; Litvak, L. (PI) ; Lobell, D. (PI) ; Long, S. (PI) ; Lynham, J. (PI) ; Masters, G. (PI) ; Matson, P. (PI) ; Micheli, F. (PI) ; Milroy, J. (PI) ; Monismith, S. (PI) ; Mooney, H. (PI) ; Naylor, R. (PI) ; Nevle, R. (PI) ; Orr, F. (PI) ; Palumbi, S. (PI) ; Payne, J. (PI) ; Peay, K. (PI) ; Phillips, K. (PI) ; Rajaratnam, B. (PI) ; Root, T. (PI) ; Rothe, M. (PI) ; Schipper, L. (PI) ; Schneider, S. (PI) ; Schoolnik, G. (PI) ; Seto, K. (PI) ; Somero, G. (PI) ; Sweeney, J. (PI) ; Switzer, P. (PI) ; Tabazadeh, A. (PI) ; Thomas, L. (PI) ; Thompson, B. (PI) ; Victor, D. (PI) ; Vitousek, P. (PI) ; Walbot, V. (PI) ; Watanabe, J. (PI) ; Weyant, J. (PI) ; Wiederkehr, S. (PI) ; Woodward, J. (PI) ; Zoback, M. (PI)

EARTHSYS 260: Internship

Supervised field, lab, or private sector project. May consist of directed research under the supervision of a Stanford faculty member, participation in one of several off campus Stanford programs, or an approved non-Stanford program relevant to the student's Earth Systems studies. Required of and restricted to declared Earth Systems majors. Includes 15-page technical summary research paper that is subject to iterative revision.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit

EARTHSYS 293: Environmental Communication Practicum

Students complete an internship or similar practical experience in a professional environmental communication setting. Potential placements include environmental publications, NGOs, government agencies, on-campus entities, and science centers and museums. Restricted to students enrolled in the Environmental Communication Master of Arts in Earth Systems. Can be completed in any quarter.
Terms: Aut, Win, Spr, Sum | Units: 5 | Repeatable for credit

EARTHSYS 294: Environmental Communication Capstone

Project-based course focused on applying the skills and theoretical understanding gained through the Earth Systems Master of Arts, Environmental Communication course progression to a real-world communication challenge. Students design, plan, and implement an integrated communication strategy around a defined environmental topic or research program; a specific research group's laboratory or expedition work; or a topic or concept of interest across research groups, such as climate change adaptation or marine conservation. Restricted to students enrolled in the Earth Systems Master of Arts, Environmental Communication Program, or by permission of the instructor. May also be completed as an independent project, in consultation with the Earth Systems Master of Arts, Environmental Communication Director.
Terms: Spr, Sum | Units: 5 | Repeatable for credit
Instructors: Hayden, T. (PI)

EARTHSYS 297: Directed Individual Study in Earth Systems

Under supervision of an Earth Systems faculty member on a subject of mutual interest.
Terms: Aut, Win, Spr, Sum | Units: 1-9 | Repeatable for credit
Instructors: Archie, P. (PI) ; Ardoin, N. (PI) ; Arrigo, K. (PI) ; Asner, G. (PI) ; Banerjee, B. (PI) ; Barry, M. (PI) ; Block, B. (PI) ; Boggs, C. (PI) ; Boucher, A. (PI) ; Cain, B. (PI) ; Caldeira, K. (PI) ; Caldwell, M. (PI) ; Casciotti, K. (PI) ; Chamberlain, P. (PI) ; Curran, L. (PI) ; Daily, G. (PI) ; Davis, J. (PI) ; Denny, M. (PI) ; Diffenbaugh, N. (PI) ; Dirzo, R. (PI) ; Dunbar, R. (PI) ; Durham, W. (PI) ; Egger, A. (PI) ; Ernst, W. (PI) ; Falcon, W. (PI) ; Fendorf, S. (PI) ; Field, C. (PI) ; Francis, C. (PI) ; Frank, Z. (PI) ; Freyberg, D. (PI) ; Gardner, C. (PI) ; Gerritsen, M. (PI) ; Gilly, W. (PI) ; Gordon, D. (PI) ; Gorelick, S. (PI) ; Goulder, L. (PI) ; Hadly, E. (PI) ; Hawk, S. (PI) ; Hayden, T. (PI) ; Hecker, S. (PI) ; Hilley, G. (PI) ; Hoagland, S. (PI) ; Ihme, M. (PI) ; Ingle, J. (PI) ; Jackson, R. (PI) ; Jacobson, M. (PI) ; Jamieson, A. (PI) ; Jones, J. (PI) ; Kennedy, D. (PI) ; Kennedy, D. (PI) ; Kennedy, J. (PI) ; Knight, R. (PI) ; Koseff, J. (PI) ; Kovscek, A. (PI) ; Lambin, E. (PI) ; Lawrence, K. (PI) ; Litvak, L. (PI) ; Lobell, D. (PI) ; Long, S. (PI) ; Lutomski, P. (PI) ; Lynham, J. (PI) ; Lyons, E. (PI) ; Masters, G. (PI) ; Matson, P. (PI) ; Micheli, F. (PI) ; Monismith, S. (PI) ; Mooney, H. (PI) ; Mormann, F. (PI) ; Naylor, R. (PI) ; Nelson, J. (PI) ; Nevle, R. (PI) ; Novy, J. (PI) ; Orr, F. (PI) ; Ortolano, L. (PI) ; Osborne, M. (PI) ; Palumbi, S. (PI) ; Payne, J. (PI) ; Phillips, K. (PI) ; Polk, E. (PI) ; Rajaratnam, B. (PI) ; Root, T. (PI) ; Rothe, M. (PI) ; Saltzman, J. (PI) ; Schipper, L. (PI) ; Schneider, S. (PI) ; Schoolnik, G. (PI) ; Seto, K. (PI) ; Shiv, B. (PI) ; Simon, G. (PI) ; Somero, G. (PI) ; Sweeney, J. (PI) ; Switzer, P. (PI) ; Tabazadeh, A. (PI) ; Thomas, L. (PI) ; Thompson, B. (PI) ; Truebe, S. (PI) ; Victor, D. (PI) ; Vitousek, P. (PI) ; Walbot, V. (PI) ; Watanabe, J. (PI) ; Weyant, J. (PI) ; Wiederkehr, S. (PI) ; Wight, G. (PI) ; Wolak, F. (PI) ; Woodward, J. (PI) ; Zoback, M. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints