2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 11 results for: BIOPHYS

BIOPHYS 228: Computational Structural Biology (SBIO 228)

Interatomic forces and interactions such as electrostatics and hydrophobicity, and protein structure in terms of amino acid properties, local chain conformation, secondary structure, domains, and families of folds. How protein motion can be simulated. Bioinformatics introduced in terms of methods that compare proteins via their amino acid sequences and their three-dimensional structures. Structure prediction via simple comparative modeling. How to detect and model remote homologues. Predicting the structure of a protein from knowledge of its amino acid sequence. Via Internet.
Terms: Aut | Units: 3
Instructors: Levitt, M. (PI)

BIOPHYS 232: Advanced Imaging Lab in Biophysics (BIO 132, BIO 232, MCP 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, and optical trapping. Limited enrollment. Recommended: basic physics, Biology core or equivalent, and consent of instructor.
Terms: Spr | Units: 4

BIOPHYS 241: Biological Macromolecules (BIOC 241, SBIO 241)

The physical and chemical basis of macromolecular function. Forces that stabilize biopolymers with three-dimensional structures and their functional implications. Thermodynamics, molecular forces, and kinetics of enzymatic and diffusional processes, and relationship to their practical application in experimental design and interpretation. Biological function and the level of individual molecular interactions and at the level of complex processes. Case studies. Prerequisites: introductory biochemistry and physical chemistry or consent of instructor.
Terms: Aut | Units: 3-5

BIOPHYS 250: Seminar in Biophysics

Required of Biophysics graduate students. Presentation of current research projects and results by faculty in the Biophysics program. May be repeated for credit. (W. Weiss)
Terms: Aut, Win | Units: 1 | Repeatable for credit
Instructors: Weis, W. (PI)

BIOPHYS 300: Graduate Research

Investigations sponsored by individual faculty members. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

BIOPHYS 399: Directed Reading in Biophysics

Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-18 | Repeatable for credit

BIOPHYS 801: TGR Project

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOPHYS 802: TGR Dissertation

Terms: Aut, Win, Spr, Sum | Units: 0 | Repeatable for credit

BIOPHYS 227: Functional MRI Methods (RAD 227)

Basics of functional magnetic resonance neuroimaging, including data acquisition, analysis, and experimental design. Journal club sections. Cognitive neuroscience and clinical applications. Prerequisites: basic physics, mathematics. Recommended: neuroscience.

BIOPHYS 242: Methods in Molecular Biophysics (SBIO 242)

Experimental methods in molecular biophysics from theoretical and practical standpoints. Emphasis is on X-ray diffraction, nuclear magnetic resonance, and fluorescence spectcroscopy. Prerequisite: physical chemistry or consent of instructor.
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints