2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 42 results for: CHEMENG

CHEMENG 10: The Chemical Engineering Profession

Open to all undergraduates. Overview of and careers in chemical engineering; opportunities to develop networks with working professionals. Panel discussions on career paths and post-graduation opportunities available. Areas include biotechnology, electronics, energy, environment, management consulting, nanotechnology, and graduate school in business, law, medicine, and engineering.
Terms: Aut | Units: 1
Instructors: Dunn, A. (PI)

CHEMENG 60Q: Environmental Regulation and Policy

Preference to sophomores. How environmental policy is formulated in the U.S. How and what type of scientific research is incorporated into decisions. How to determine acceptable risk, the public's right to know of chemical hazards, waste disposal and clean manufacturing, brownfield redevelopment, and new source review regulations. The proper use of science and engineering including media presentation and misrepresentation, public scientific and technical literacy, and emotional reactions. Alternative models to formulation of environmental policy. Political and economic forces, and stakeholder discussions.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Libicki, S. (PI)

CHEMENG 70Q: Masters of Disaster

Preference to sophomores. For students interested in science, engineering, politics, and the law. Learn from past disasters to avoid future ones. How disasters can be tracked to failures in the design process. The roles of engineers, artisans, politicians, lawyers, and scientists in the design of products. Failure as rooted in oversight in adhering to the design process. Student teams analyze real disasters and design new products presumably free from the potential for disastrous outcomes.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Moalli, J. (PI)

CHEMENG 100: Chemical Process Modeling, Dynamics, and Control

Mathematical methods applied to engineering problems using chemical engineering examples. The development of mathematical models to describe chemical process dynamic behavior. Analytical and computer simulation techniques for the solution of ordinary differential equations. Dynamic behavior of linear first- and second-order systems. Introduction to process control. Dynamics and stability of controlled systems. Prerequisites: CHEMENG 20 or ENGR 20; CME 102 or MATH 53.
Terms: Aut | Units: 3
Instructors: Hwang, L. (PI)

CHEMENG 162: Polymers for Clean Energy and Water (CHEMENG 262)

The first five weeks of this course will be devoted to the fundamental aspects of polymers necessary to understand the applications in energy and the environment. These include: polymer chain configuration, morphology of semi-crystalline and amorphous solids, thermal transition behavior, thermodynamics of polymer blends and block copolymers, and the time/temperature dependence of linear viscoelasticity. The remaining five weeks of class will be devoted to applications, with special emphasis on membrane transport, including ion transport in fuel cell exchange membranes, gas transport in hydrogen enrichment membranes, and water transport in desalination membranes. In addition, completely degradable biocomposites will be discussed. nPrerequisites: CHEM 31 A,B or CHEM 31X, CHEM 33, CHEM 171
Terms: Aut | Units: 3
Instructors: Yoon, D. (PI)

CHEMENG 170: Kinetics and Reactor Design

Chemical kinetics, elementary reactions, mechanisms, rate-limiting steps, and quasi-steady state approximations. Ideal isothermal and non-isothermal reactors; design principles. Steady state and unsteady state operation of reactors; conversion and limitations of thermodynamic equilibrium. Enzymes and heterogeneous catalysis and catalytic reaction mechanisms. Prerequisites: 110, 120A, 120B.
Terms: Aut | Units: 3
Instructors: Bent, S. (PI)

CHEMENG 174: Environmental Microbiology I (CEE 274A, CHEMENG 274)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33, 35, and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3
Instructors: Spormann, A. (PI)

CHEMENG 181: Biochemistry I (BIO 188, BIO 288, CHEM 181, CHEMENG 281)

Structure and function of major classes of biomolecules, including proteins, carbohydrates and lipids. Mechanistic analysis of properties of proteins including catalysis, signal transduction and membrane transport. Students will also learn to critically analyze data from the primary biochemical literature. Satisfies Central Menu Area 1 for Bio majors. (CHEMENG offerings formerly listed as 188/288.) Prerequisites: CHEM 33, 35, 131, and 135 or 171.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

CHEMENG 185A: Chemical Engineering Laboratory A

CHEMENG185A: First quarter of two-quarter sequence. Experimental aspects of chemical engineering. Experimental research skills will be developed and practiced through guided lab modules. Emphasizes laboratory work, experimental design, and development of communication skills. In addition to lectures, students are required to attend one weekly lab section (5 hours each) where lab work will be conducted in student pairs. Students must enroll in a lab section on Axess. Final project will be a written research proposal prepared by student teams to be carried out in the following quarter in CHEMENG185B. Satisfies the Writing in the Major (WIM) requirement. Prerequisites: CHEMENG 120A, 120B, 181.
Terms: Aut | Units: 4
Instructors: Sattely, E. (PI)

CHEMENG 190: Undergraduate Research in Chemical Engineering

Laboratory or theoretical work for undergraduates under the supervision of a faculty member. Research in one of the graduate research groups or other special projects in the undergraduate chemical engineering lab. Students should consult advisers for information on available projects. Course may be repeated.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints