2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

171 - 180 of 298 results for: ME

ME 326: Telerobotics and Human-Robot Interactions

Focus is on dynamics and controls. Evaluation and implementation of required control systems. Topics include master-slave systems, kinematic and dynamic similarity; control architecture, force feedback, haptics, sensory substitutions; stability, passivity, sensor resolution, servo rates; time delays, prediction, wave variables. Hardware-based projects encouraged, which may complement ongoing research or inspire new developments. Limited enrollment. Prerequisites: ENGR 205, 320 or CS 223A, or consent of instructor. (Niemeyer)

ME 327: Design and Control of Haptic Systems

Study of the design and control of haptic systems, which provide touch feedback to human users interacting with virtual environments and teleoperated robots. Focus is on device modeling (kinematics and dynamics), synthesis and analysis of control systems, design and implementation, and human interaction with haptic systems. Coursework includes homework/laboratory assignments and a research-oriented project. Directed toward graduate students and advanced undergraduates in engineering and computer science. Prerequisites: dynamic systems and MATLAB programming. Suggested experience with programming, feedback control design, and hardware prototyping.
Last offered: Autumn 2015

ME 328: Medical Robotics

Study of the design and control of robots for medical applications. Focus is on robotics in surgery and interventional radiology, with introduction to other healthcare robots. Delivery is through instructor lectures and weekly guest speakers. Coursework includes homework and laboratory assignments, an exam, and a research-oriented project. Directed toward graduate students and advanced undergraduates in engineering and computer science; no medical background required. Prerequisites: dynamic systems and MATLAB programming. Suggested experience with C/C++ programming, feedback control design, and linear systems. Cannot be taken concurrently with CS 571.
Terms: Aut | Units: 3

ME 329: Mechanical Analysis in Design

This project based course will cover the application of engineering analysis methods learned in the Mechanics and Finite Element series to real world problems involving the mechanical analysis of a proposed device or process. Students work in teams, and each team has the goal of solving a problem defined jointly with a sponsoring company or research group. Each team will be mentored by a faculty mentor and a mentor from the sponsoring organization. The students will gain experience in the formation of project teams; interdisciplinary communication skills; intellectual property; and project management. Course has limited enrollment.
Terms: Win | Units: 3
Instructors: Lew, A. (PI)

ME 330: Advanced Kinematics

Kinematics from mathematical viewpoints. Introduction to algebraic geometry of point, line, and plane elements. Emphasis is on basic theories which have potential application to mechanical linkages, computational geometry, and robotics.
Terms: Win | Units: 3
Instructors: Roth, B. (PI)

ME 331A: Advanced Dynamics & Computation

Newton, Euler, momentum, and road-map methods and computational tools for 3-D force and motion analysis of multibody systems. Power, work, and energy. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the static and dynamic behavior of multiple degree of freedom systems.
Terms: Win | Units: 3

ME 331B: Advanced Dynamics, Simulation & Control

Advanced methods and computational tools for the efficient formulation of equations of motion for multibody systems. D'Alembert principle. Power, work, and energy. Kane's and Lagrange's method. Computed torque control. Systems with constraints. Quaternions. Numerical solutions (e.g., MATLAB, etc.) of nonlinear algebraic and differential equations governing the behavior of multiple degree of freedom systems. Team-based computational multi-body lab project (inclusion of feed-forward control optional).
Last offered: Spring 2016

ME 332: Introduction to Computational Mechanics (CME 232)

Provides an introductory overview of modern computational methods for problems arising primarily in mechanics of solids and is intended for students from various engineering disciplines. The course reviews the basic theory of linear solid mechanics and introduces students to the important concept of variational forms, including the principle of minimum potential energy and the principles of virtual work. Specific model problems that will be considered include deformation of bars, beams and membranes, plates, and problems in plane elasticity (plane stress, plane strain, axisymmetric elasticity). The variational forms of these problems are used as the starting point for developing the finite element method (FEM) and boundary element method (BEM) approaches ­ providing an important connection between mechanics and computational methods.
Last offered: Summer 2015

ME 333: Mechanics

Goal is a common basis for advanced mechanics courses. Introduction to variation calculus. Formulation of the governing equations from a Lagrangian perspective for finite and infinite dimensional mechanical systems. Examples include systems of particles and linear elastic solids. Introduction to tensors. Definition and interpretation of Cauchy stress tenor.
Last offered: Autumn 2013

ME 333A: Mechanics - Fundamentals and Lagrangian Mechanics

Goal is a common basis for advanced mechanics courses. Introduction to variational calculus. Formulation of the governing equations from a Lagrangian perspective for finite and infinite dimensional mechanical systems. Examples include systems of particles and linear elastic solids. Introduction to tensors. Definition and interpretation of Cauchy stress tensor.
Terms: Aut | Units: 3
Instructors: Lew, A. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints