2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

11 - 20 of 24 results for: AA

AA 236A: Spacecraft Design

This course focuses on the design and implementation of spacecraft deployable structure systems. Students are introduced to the requirements driving the design of large spacecraft structures, various design approaches to realize deployable structures, and modeling and analysis tools for the design of deployable structures. Students will design a concept for a deployable spacecraft structure that meets functional, mechanical, and environmental requirements. AA 151 Lightweight Structures (or similar) is a strongly recommended pre-requisite.
Terms: Aut | Units: 3

AA 242A: Classical Dynamics

Accelerating and rotating reference frames. Kinematics of rigid body motion; Euler angles, direction cosines. D'Alembert's principle, equations of motion. Inertia properties of rigid bodies. Dynamics of coupled rigid bodies. Lagrange's equations and their use. Dynamic behavior, stability, and small departures from equilibrium. Prerequisite: ENGR 15 or equivalent.
Terms: Aut | Units: 3

AA 256: Mechanics of Composites

Fiber reinforced composites. Stress, strain, and strength of composite laminates and honeycomb structures. Failure modes and failure criteria. Environmental effects. Manufacturing processes. Design of composite structures. Individual design project required of each student, resulting in a usable computer software. Prerequisite: ME 80 and AA 156 or equivalent.
Terms: Aut | Units: 3

AA 272: Global Positioning Systems

The principles of satellite navigation using Global Positioning Systems (GPS). Positioning techniques using code tracking, single and dual frequency, carrier aiding, and use of differential and assisted GPS/GNSS for improved accuracy and integrity. Students will learn the building blocks to go from raw received satellite time in nanoseconds all the way to a sophisticated position solution. Using provided Android smartphones, students will collect data and implement an open-ended course project where the goal is to get creative and solve an interesting problem using the tools developed in this course. Prerequisites: familiarity with matrix algebra and MatLab (or another mathematical programming language).
Terms: Aut | Units: 3

AA 274A: Principles of Robot Autonomy I (CS 237A, EE 260A)

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisites: CS 106A or equivalent, CME 100 or equivalent (for linear algebra), and CME 106 or equivalent (for probability theory).
Terms: Aut | Units: 3

AA 279B: Advanced Space Mechanics

Restricted 3-body problem. Relative motion, Hill's and Clohessy-Wiltshire equations. Lambert's problem. Satellite constellations and optimization. Communications and link budgets. Space debris. High fidelity simulation. Interplanetary mission planning, launch windows and gravity assists. Basic trajectory optimization. Several guest lectures from practitioners in the field. Individual final project chosen in consultation with instructor. Prerequisites: 279A or equivalent with permission of instructor. Fluency with MATLAB (or another mathematical programming language with 2D and 3D plotting capabilities).
Terms: Aut | Units: 3
Instructors: Barrows, A. (PI)

AA 289: Robotics and Autonomous Systems Seminar (CS 529)

Seminar talks by researchers and industry professionals on topics related to modern robotics and autonomous systems. Broadly, talks will cover robotic design, perception and navigation, planning and control, and learning for complex robotic systems. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)

AA 290: Problems in Aero/Astro

(Undergraduates register for 190 or 199.) Experimental, theoretical, or computational investigation. Students may work in any field of special interest. This course is designed to develop students' understanding of what a research problem is and the skills needed to successfully approach and conduct research. Register in Axess for section belonging to your research supervisor once the faculty member agrees to supervise your independent study. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-5 | Repeatable for credit

AA 291: Practical Training

Educational opportunities in high-technology research and development labs in aerospace and related industries. Internship integrated into a student's academic program. Research report outlining work activity, problems investigated, key results, and any follow-on projects. Meets the requirements for Curricular Practical Training for students on F-1 visas. Student is responsible for arranging own employment and should see department student services manager before enrolling. May be repeated for credit.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

AA 296: Plasma Science and Technology Seminar (ME 350)

Guest speakers present research related to plasma science and engineering, ranging from fundamental plasma physics to industrial applications of plasma.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit (up to 99 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints