2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 170 results for: EARTHSYS

EARTHSYS 2: Chemistry of the Earth and Planets (EPS 2)

( EPS 2 - Former GEOLSCI 2) Chemistry of the Earth and Planets Couse Description: Introduction to chemical principles with an emphasis on applications in the Earth Sciences. Topics include the origin and distribution of the elements in the solar system and on Earth, the origin and structure of the Earth, its oceans, and atmosphere; crystal chemistry, structure, and transformations; predicting and balancing reactions; thermodynamics, phase diagrams, high temperature and aqueous geochemistry, weathering, isotope geochemistry, and organic geochemistry. Students will also be exposed to analytical methods used in the Earth sciences. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 3 | UG Reqs: WAY-SMA | Repeatable 3 times (up to 9 units total)

EARTHSYS 4: Coevolution of Earth and Life (EPS 4)

( EPS 4 - Former GEOLSCI 4) Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? In this course, we explore these questions by developing an understanding of life's multi-billion year history using tools from biology, geology, paleontology, and chemistry. We discuss major groups of organisms, when they appear in the rock record, and how they have interacted with the Earth to create the habitats and ecosystems that we are familiar with today. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 8: The Oceans: An Introduction to the Marine Environment (ESS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA
Instructors: Arrigo, K. (PI)

EARTHSYS 10: Introduction to Earth Systems

For non-majors and prospective Earth Systems majors. Multidisciplinary approach using the principles of geology, biology, engineering, and economics to describe how the Earth operates as an interconnected, integrated system. Goal is to understand global change on all time scales. Focus is on sciences, technological principles, and sociopolitical approaches applied to solid earth, oceans, water, energy, and food and population. Case studies: environmental degradation, loss of biodiversity, and resource sustainability.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

EARTHSYS 11: Introduction to Geology (EPS 1)

(Former GEOLSCI 1) Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth's surface? Why are there rolling hills to the west behind Stanford and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one virtual field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history. Change of Department Name: Earth & Planetary Sciences (Formerly Geological Science)
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA, WAY-AQR

EARTHSYS 16SC: River and Region: The Columbia River and the Shaping of the Pacific Northwest (CEE 17SC, HISTORY 29SC, POLISCI 14SC)

This seminar will explore the crucial role of the Columbia River in the past, present, and future of the Pacific Northwest. Topics will include the lives and legacies of the indigenous peoples that Lewis and Clark encountered more than two centuries ago; the historic fisheries that attracted thousands of Chinese and, later, Scandinavian workers; the New Deal¿s epic dam-building initiatives beginning in the 1930s; the impact of the Manhattan Project¿s plutonium bomb development at Hanford Atomic Works in WWII; and the twenty-first-century server farms dotted across the Columbia Plateau. We plan to visit with local water managers, farmers, ranchers, loggers, Native American fishermen, and energy administrators, as well as elected officials and environmental activists, to examine the hydrologic, meteorologic, and geologic bases of the river¿s water and energy resources, and the practical, social, environmental, economic, and political issues surrounding their development in the Pacific Northwest region.The Columbia River and its watershed provide a revealing lens on a host of issues. A transnational, multi-state river with the largest residual populations of anadromous salmonids in the continental US, it is a major source of renewable hydroelectric power. (The Grand Coulee dam powerhouse is the largest-capacity hydropower facility in the US; nearly 50% of Oregon¿s electricity generation flows from hydropower; in Washington State it¿s nearly two-thirds, the highest in the nation.) The river provides a major bulk commodity transportation link from the interior West to the sea via an elaborate system of locks. It irrigates nearly 700,000 acres of sprawling wheat ranches and fruit farms in the federally administered Columbia Basin Project. We will look at all these issues with respect to rapid climate change, ecosystem impacts, economics, and public policy.We will begin with classroom briefings on campus, in preparation for the two-week field portion of the seminar. We plan to then travel widely throughout the Columbia basin, visiting water and energy facilities across the watershed, e.g., hydro, solar, wind, and natural gas power plants; dams and reservoirs with their powerhouses, fish passage facilities, navigation locks, and flood-mitigation systems; tribal organizations; irrigation projects; the Hanford Nuclear Reservation; and offices of regulatory agencies. We hope to meet with relevant policy experts and public officials, along with several of the stakeholders in the basin.Over the summer students will be responsible for assigned readings from several sources, including monographs, online materials, and recent news articles. During the trip, students will work in small groups to analyze and assess one aspect of the river¿s utilization, and the challenges to responsible management going forward. The seminar will culminate in presentations to an audience of Stanford alumni in Portland, Oregon.
Last offered: Summer 2023

EARTHSYS 26: Sustainability in Athletics

This interactive, seminar-style course explores the intersection of environmental sustainability and athletics. Athletic endeavors provide a unique lens to analyze environmental sustainability due to their global reach, engaged fan bases and widely popular sport icons. At the same time, the athletics industry produces an enormous environmental footprint with its travel, events, venue construction and maintenance, high protein diets, global supply chains for equipment, gear and even swag. Because of this reality, the sports industry has the opportunity and responsibility to create meaningful change in support of a sustainable future. We will explore the many ways that the athletics industry can make this change by inviting weekly speakers from a multitude of sports realms to share their expertise, vision and advice. There will be six learning modules addressing sustainability in terms of athletic gear and equipment, sports nutrition, facilities and stadiums, game days and events, the na more »
This interactive, seminar-style course explores the intersection of environmental sustainability and athletics. Athletic endeavors provide a unique lens to analyze environmental sustainability due to their global reach, engaged fan bases and widely popular sport icons. At the same time, the athletics industry produces an enormous environmental footprint with its travel, events, venue construction and maintenance, high protein diets, global supply chains for equipment, gear and even swag. Because of this reality, the sports industry has the opportunity and responsibility to create meaningful change in support of a sustainable future. We will explore the many ways that the athletics industry can make this change by inviting weekly speakers from a multitude of sports realms to share their expertise, vision and advice. There will be six learning modules addressing sustainability in terms of athletic gear and equipment, sports nutrition, facilities and stadiums, game days and events, the national and international stage, and individual sustainability superstars. Through taking this course, students will develop an understanding for the current state of athletic sustainability as well as future directions and opportunities for the industry in this space. They also get to undertake a real project on campus to further Stanford¿s commitment to sustainability as a purposeful university. The one unit option focusses on the weekly speakers, reading reflections and a final presentation, where the two unit option incorporates a sustainability in athletics project on campus. A project deliverable and presentation will serve as the culmination of this course.
Terms: Spr | Units: 1-2

EARTHSYS 36N: Life at the Extremes: From the Deep Sea to Deep Space

Preference to freshmen. Microbial life is diverse and resilient on Earth; could it survive elsewhere in our solar system? This seminar will investigate the diversity of microbial life on earth, with an emphasis on extremophiles, and consider the potential for microbial life to exist and persist in extraterrestrial locales. Topics include microbial phylogenetic and physiological diversity, biochemical adaptations of extremophiles, ecology of extreme habitats, and apparent requirements and limits of life. Format includes lectures, discussions, lab-based activities and local field trips. Basics of microbiology, biochemistry, and astrobiology.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: Dekas, A. (PI)

EARTHSYS 37Q: Food Justice Now! Power and Politics in the Ways We Eat (CSRE 37Q, SOC 37Q)

Where does the food you eat come from? How does it get to your plate? Where does it go when you don't finish it? And why are those particular items on your plate in the first place? How and what we eat is a vastly overlooked part of everyday life, and yet comes with huge personal, societal, and environmental effects, both positive and (quite often) negative. But this isn't indicative of personal moral failings or ignorance - rather, the food system was designed this way. And it leaves many of us without choice or consent around what we put into our bodies and how our actions impact those around us, thereby exacerbating social and health inequities. This class will uncover the secret workings of the global food system and introduce students to movements and efforts towards creating a more just food future for all. We will center on the concept of 'food justice,' which includes all ideas and practices that strive to eliminate exploitation and oppression within and beyond the food system. more »
Where does the food you eat come from? How does it get to your plate? Where does it go when you don't finish it? And why are those particular items on your plate in the first place? How and what we eat is a vastly overlooked part of everyday life, and yet comes with huge personal, societal, and environmental effects, both positive and (quite often) negative. But this isn't indicative of personal moral failings or ignorance - rather, the food system was designed this way. And it leaves many of us without choice or consent around what we put into our bodies and how our actions impact those around us, thereby exacerbating social and health inequities. This class will uncover the secret workings of the global food system and introduce students to movements and efforts towards creating a more just food future for all. We will center on the concept of 'food justice,' which includes all ideas and practices that strive to eliminate exploitation and oppression within and beyond the food system. This trajectory will take us through understandings of economic, political, cultural, social, and ecological life, both now and in the past, providing students with a unique opportunity to gain interdisciplinary knowledge of food systems. For instance, we will learn about how historical and modern-day activists and scholars draw on movements for economic, gender, racial, climate, and environmental justice, and explore the possibilities for both reformative and transformative food politics. Finally, because food production, consumption, and activism are all highly tangible practices, the class will engage in field trips to the Stanford O'Donohue Family Farm, Stanford Food Institute's Teaching Kitchen, and a local Bay Area farm to get hands-on experience with what it means to eat more ethically.
Terms: Aut | Units: 3 | UG Reqs: WAY-EDP, WAY-SI
Instructors: Ramirez, B. (PI)

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EPS 38N, ESS 38N)

(Formerly GEOLSCI 38N) This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints