2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 78 results for: CHEMENG

CHEMENG 262: Polymers for Clean Energy and Water (CHEMENG 162)

The first five weeks of this course will be devoted to the fundamental aspects of polymers necessary to understand the applications in energy and the environment. These include: polymer chain configuration, morphology of semi-crystalline and amorphous solids, thermal transition behavior, thermodynamics of polymer blends and block copolymers, and the time/temperature dependence of linear viscoelasticity. The remaining five weeks of class will be devoted to applications, with special emphasis on membrane transport, including ion transport in fuel cell exchange membranes, gas transport in hydrogen enrichment membranes, and water transport in desalination membranes. In addition, completely degradable biocomposites will be discussed. nPrerequisites: CHEM 31 A,B or CHEM 31X, CHEM 33, CHEM 171
Terms: Aut | Units: 3
Instructors: Frank, C. (PI)

CHEMENG 274: Environmental Microbiology I (CEE 274A, CHEMENG 174)

Basics of microbiology and biochemistry. The biochemical and biophysical principles of biochemical reactions, energetics, and mechanisms of energy conservation. Diversity of microbial catabolism, flow of organic matter in nature: the carbon cycle, and biogeochemical cycles. Bacterial physiology, phylogeny, and the ecology of microbes in soil and marine sediments, bacterial adhesion, and biofilm formation. Microbes in the degradation of pollutants. Prerequisites: CHEM 33, 35, and BIOSCI 41, CHEMENG 181 (formerly 188), or equivalents.
Terms: Aut | Units: 3
Instructors: Spormann, A. (PI)

CHEMENG 281: Biochemistry I (BIO 188, BIO 288, CHEM 181, CHEMENG 181)

(CHEMENG offerings formerly listed as 188/288.) Chemistry of major families of biomolecules including proteins, nucleic acids, carbohydrates, lipids, and cofactors. Structural and mechanistic analysis of properties of proteins including molecular recognition, catalysis, signal transduction, membrane transport, and harvesting of energy from light. Molecular evolution. Satisfies Central Menu Area 1 for Bio majors. Prerequisites: CHEM 33, 35, 131, and 135 or 171.
Terms: Aut | Units: 3

CHEMENG 283: Biochemistry II (BIO 189, BIO 289, CHEM 183, CHEMENG 183)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: BIO 188/288 or CHEM 181 or CHEMENG 181/281 (formerly 188/288).
Terms: Win | Units: 3
Instructors: Dunn, A. (PI)

CHEMENG 296: Entrepreneurship in Engineering and Science-based Industries (CHEMENG 196)

Open to seniors and graduate students interested in entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define entrepreneurship, particularly for companies that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Aut | Units: 3

CHEMENG 300: Applied Mathematics in the Chemical and Biological Sciences (CME 330)

Mathematical solution methods via applied problems including chemical reaction sequences, mass and heat transfer in chemical reactors, quantum mechanics, fluid mechanics of reacting systems, and chromatography. Topics include generalized vector space theory, linear operator theory with eigenvalue methods, phase plane methods, perturbation theory (regular and singular), solution of parabolic and elliptic partial differential equations, and transform methods (Laplace and Fourier). Prerequisites: CME 102/ ENGR 155A and CME 104/ ENGR 155B, or equivalents.
Terms: Aut | Units: 3
Instructors: Shaqfeh, E. (PI)

CHEMENG 310: Microhydrodynamics (ME 451D)

Transport phenomena on small-length scales appropriate to applications in microfluidics, complex fluids, and biology. The basic equations of mass, momentum, and energy, derived for incompressible fluids and simplified to the slow-flow limit. Topics: solution techniques utilizing expansions of harmonic and Green's functions; singularity solutions; flows involving rigid particles and fluid droplets; applications to suspensions; lubrication theory for flows in confined geometries; slender body theory; and capillarity and wetting. Prerequisites: 120A,B, 300, or equivalents.
Terms: Win | Units: 3
Instructors: Fuller, G. (PI)

CHEMENG 320: Chemical Kinetics and Reaction Engineering

Theoretical and experimental tools useful in understanding and manipulating reactions mediated by small-molecules and biological catalysts. Theoretical: first classical chemical kinetics and transition state theory; then RRKM theory and Monte Carlo simulations. Experimental approaches include practical application of modern spectroscopic techniques, stopped-flow measurements, temperature-jump experiments, and single-molecule approaches to chemical and biological systems. Both theory and application are framed with regard to systems of particular interest, including industrially relevant enzymes, organometallic catalysts, heterogeneous catalysis, electron transfer reactions, and chemical kinetics within living cells.
Terms: Spr | Units: 3
Instructors: Dunn, A. (PI)

CHEMENG 340: Molecular Thermodynamics

Classical thermodynamics and quantum mechanics. Development of statistical thermodynamics to address the collective behavior of molecules. Establishment of theories for gas, liquid, and solid phases, including phase transitions and critical behavior. Applications include electrolytes, ion channels, surface adsorption, ligand binding to proteins, hydrogen bonding in water, hydrophobicity, polymers, and proteins.
Terms: Aut | Units: 3

CHEMENG 345: Fundamentals and Applications of Spectroscopy (PHOTON 345)

Development of theoretical approaches to spectroscopy, including spectroscopic transitions, transition probabilities, and selection rules. Application to photon and electron spectroscopies of the gas and solid phases. Topics: rotational spectroscopy; infrared and Raman vibrational spectroscopies; fluorescence spectroscopy; Auger, x-ray and ultraviolet photoelectron spectroscopies. Prerequisite: CHEM 271 or course in quantum mechanics.
Terms: Win | Units: 3
Instructors: Bent, S. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints