2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 116 results for: all courses

ENGR 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR

ENGR 40: Introductory Electronics

Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Frequency response of linear circuits, including basic filters, using phasor analysis. Digital logic fundamentals, logic gates, and basic combinatorial logic blocks. Lab. Lab assignments. Enrollment limited to 200.
Terms: Win | Units: 5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Dutton, R. (PI)

ENGR 40A: Introductory Electronics

Abbreviated version of E40, for students not pursuing degree in Electrical Engineering. Instruction to be completed in the first seven weeks of the quarter. Overview of electronic circuits and applications. Electrical quantities and their measurement, including operation of the oscilloscope. Basic models of electronic components including resistors, capacitors, inductors, and the operational amplifier. Lab. Lab assignments. Enrollment limited to 200.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Instructors: Dutton, R. (PI)

ENGR 50: Introduction to Materials Science, Nanotechnology Emphasis

The structure, bonding, and atomic arrangements in materials leading to their properties and applications. Topics include electronic and mechanical behavior, emphasizing nanotechnology, solid state devices, and advanced structural and composite materials.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR
Instructors: Sinclair, R. (PI)

ENGR 50M: Introduction to Materials Science, Biomaterials Emphasis

Topics include: the relationship between atomic structure and macroscopic properties of man-made and natural materials; mechanical and thermodynamic behavior of surgical implants including alloys, ceramics, and polymers; and materials selection for biotechnology applications such as contact lenses, artificial joints, and cardiovascular stents. No prerequisite.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

ENGR 90: Environmental Science and Technology (CEE 70)

Introduction to environmental quality and the technical background necessary for understanding environmental issues, controlling environmental degradation, and preserving air and water quality. Material balance concepts for tracking substances in the environmental and engineering systems.
Terms: Aut, Sum | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR
Instructors: Kopperud, R. (PI)

ENGR 155C: Introduction to Probability and Statistics for Engineers (CME 106)

Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, non-parametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite: CME 100/ENGR154 or MATH 51.
Terms: Win, Sum | Units: 3-4 | UG Reqs: GER:DB-Math, WAY-AQR, WAY-FR
Instructors: Khayms, V. (PI)

GEOPHYS 20N: Predicting Volcanic Eruptions

Preference to sophomores. The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Last offered: Spring 2014 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 80: The Energy-Water Nexus (EARTHSYS 140)

Energy, water, and food are our most vital resources constituting a tightly intertwined network: energy production requires water, transporting and treating water needs energy, producing food requires both energy and water. The course is an introduction to learn specifically about the links between energy and water. Students will look first at the use of water for energy production, then at the role of energy in water projects, and finally at the challenge in figuring out how to keep this relationship as sustainable as possible. Students will explore case examples and are encouraged to contribute examples of concerns for discussion as well as suggest a portfolio of sustainable energy options.
| UG Reqs: WAY-AQR

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at nn https://pangea.stanford.edu/research/CDFM/CourseDescriptions/GP_113_announcement.pdf
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA, WAY-AQR
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints