2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

51 - 60 of 112 results for: CEE

CEE 220A: Building Modeling for Design & Construction (CEE 120A)

The foundational Building Information Modeling course introduces techniques for creating, managing, and applying of building information models in the building design and construction process. The course covers processes and tools for creating, organizing, and working with 2D and 3D computer representations of building components and geometries to produce models used in architectural design, construction planning and documentation, rendering and visualization, simulation, and analysis.
Terms: Aut, Sum | Units: 3

CEE 221: Global Korea: Understanding the Nexus of Innovation, Culture, and Media (CEE 121)

Description: South Korea is quickly emerging as a global powerhouse and center of innovation culture, media, and lifestyle. Recent global phenomena including k-pop, the Academy Award winning movie 'Parasite', BTS, and the Netflix Series 'Squid Game' have demonstrated the growing appeal for South Korean cultural innovation and lifestyle around the world. Further propelled by technology giants like LG, Samsung, and others, South Korean culture is becoming a global sensation. This seminar course, taught jointly at Stanford University and the Stanford Center at the Incheon Global Campus in South Korea, will explore these topics through invited speakers and vibrant discussion. For more information, visit https://korea.stanford.edu/events/lecture-classes
Terms: Aut, Win, Spr | Units: 1
Instructors: Lepech, M. (PI)

CEE 224A: Sustainable Development Studio

Project-based. Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use a cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.
Terms: Aut, Win | Units: 3 | Repeatable for credit

CEE 224B: Sustainable Development Studio

Project-based. Sustainable design, development, use and evolution of buildings; connections of building systems to broader resource systems. Areas include architecture, structure, materials, energy, water, air, landscape, and food. Projects use a cradle-to-cradle approach focusing on technical and biological nutrient cycles and information and knowledge generation and organization. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1-5
Instructors: Katz, G. (PI)

CEE 226: Life Cycle Assessment for Complex Systems

Life cycle modeling of products, industrial processes, and infrastructure/building systems; material and energy balances for large interdependent systems; environmental accounting; and life cycle costing. These methods, based on ISO 14000 standards, are used to examine emerging technologies, such as biobased products, building materials, building integrated photovoltaics, and alternative design strategies, such as remanufacturing, dematerialization, LEED, and Design for Environment: DfE. Student teams complete a life cycle assessment of a product or system chosen from industry.
Terms: Aut | Units: 3-4

CEE 233A: Studio 1: Architecture - Space, Light, and Movement (CEE 133A)

This introductory architectural design course in the studio core sequence leads students through a series of spatial design exercises. Students will explore the fundamental principles of architectural design through drawing, model making, analysis, craft, organizational systems, narrative, movement, light, form, and scale. Students will also explore architecture on campus, taking their personal experience as a point of departure for the design investigations.
Terms: Aut, Win | Units: 5
Instructors: Wood, E. (PI)

CEE 233B: Studio 2: Architecture - Architectonics and Urbanism (CEE 133B)

Building on CEE 133A, this core studio teaches conceptual and spatial thinking skills through a series of model-based investigations. Students will develop architectural proposals through process-driven assignments, examining space-making at multiple scales. Students will explore a range of tectonic vocabularies and will be able to link material choices to conceptual intent and building performance while integrating fundamental sustainable design principles.
Terms: Aut, Win | Units: 5

CEE 233C: Studio 3: Integrated Architecture and Engineering (CEE 133C)

Building on the core studio sequence of CEE 133A and 133B, this integrator studio asks students to develop a design for a building that incorporates sustainable systems and structural engineering. Students will study site dynamics, programmatic relationships, materiality, and scale. CEE faculty will collaborate to aid in the synthesis of structures, sustainable strategies, and metrics to support and enhance the design and its narrative.
Terms: Aut, Win | Units: 5

CEE 239: Design Portfolio Methods (CEE 139)

The portfolio is an essential creative tool used to communicate academic work, design philosophies, and professional intent. This course will explore elements of graphic design, presentation, communication, binding, printing, and construction, yielding a final portfolio (physical and digital) for professional, academic or personal purposes. Limited enrollment. Prerequisites: two Art, Design, or Architecture studio courses, or consent of instructor.
Terms: Aut, Spr | Units: 4
Instructors: Barton, J. (PI)

CEE 240: Project Assessment and Budgeting

Course objectives: 1) learn the processes of determining the quantities of permanent materials required and the associated construction quantities; 2) learn the capabilities of construction equipment; 3) be introduced to the make-up of construction crews; 4) design concrete form systems; 5) utilize the historic productivity of a crew to estimate the cost of construction; 6) write construction logic to create a critical path project schedule; 7) distribute the cost of construction over schedule activities to generate a cash flow curve and monthly payment schedule for the project.Construction engineering: A construction project that has reached final design must be quantified, a delivery schedule developed, it's final total price determined and the month by month demand for cash payments established. Each student will perform these activities to satisfy a "Course Project" requirement utilizing actual project design drawings obtained from the companies of the Guest Lectures and others. Guest Lecturers from: Disney Construction, Pankow Construction, Granite Construction, Stacy & Witbeck Incorporated.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints