2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 52 results for: BIO

BIO 214: Advanced Cell Biology (BIOC 224, MCP 221)

For Ph.D. students. Current research on cell structure, function, and dynamics. Topics include complex cell phenomena such as cell division, apoptosis, compartmentalization, transport and trafficking, motility and adhesion, differentiation, and multicellularity. Current papers from the primary literature. Prerequisite for advanced undergraduates: BIO 129A,B, and consent of instructor.
Terms: Win | Units: 4

BIO 218: Genetic Analysis of Biological Processes (BIO 118)

Genetic principles and their experimental applications. Emphasis is on the identification and use of mutations to study cellular function. Satisfies Central Menu Areas 1 or 2. Prerequisite: Biology core.
Terms: Win | Units: 4

BIO 220: Essential Mathematics for Research in Life and Social Sciences

Targeted review of mathematics for research in life (and social) sciences. Material includes: real and complex functions, sequences and series, essential calculus, linear algebra, probability, stochastic processes, model-building and introduction to Matlab. Links techniques to applications in research and modeling, particularly in population biology. Students will use online materials including lecture videos, problem sets, course notes, and self-paced tests.
Terms: Win | Units: 2

BIO 226: Introduction to Biophysics (APPPHYS 205, BIO 126)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4

BIO 244: Fundamentals of Molecular Evolution (BIO 113)

The inference of key molecular evolutionary processes from DNA and protein sequences. Topics include random genetic drift, coalescent models, effects and tests of natural selection, combined effects of linkage and natural selection, codon bias and genome evolution. Satisfies Central Menu Areas 1 or 4. Prerequisites: Biology core or graduate standing in any department, and consent of instructor.
Terms: Win | Units: 4

BIO 267: Molecular Mechanisms of Neurodegenerative Disease (NENS 267)

The epidemic of neurodegenerative disorders such as Alzheimer's and Parkinson's disease occasioned by an aging human population. Genetic, molecular, and cellular mechanisms. Clinical aspects through case presentations.
Terms: Win | Units: 4

BIO 274: Human Skeletal Anatomy (ANTHRO 175, ANTHRO 275, BIO 174, HUMBIO 180)

Study of the human skeleton (a. k. a. human osteology), as it bears on other disciplines, including medicine, forensics, archaeology, and paleoanthropology (human evolution). Basic bone biology, anatomy, and development, emphasizing hands-on examination and identification of human skeletal parts, their implications for determining an individual¿s age, sex, geographic origin, and health status, and for the evolutionary history of our species. Three hours of lecture and at least three hours of supervised and independent study in the lab each week.
Terms: Win | Units: 5
Instructors: Klein, R. (PI)

BIO 278: Microbiology Literature (BIO 178)

For advanced undergraduates and first-year graduate students. Critical reading of the research literature in prokaryotic genetics and molecular biology, with particular applications to the study of major human pathogens. Classic and foundational papers in pathogenesis, genetics, and molecular biology; recent literature on bacterial pathogens such as Salmonella, Vibrio, and/or Yersinia. Diverse experimental approaches: biochemistry, genomics, pathogenesis, and cell biology. Prerequisites: Biology Core and two upper-division courses in genetics, molecular biology, or biochemistry.
Terms: Win | Units: 3
Instructors: Long, S. (PI)

BIO 289: Biochemistry II (BIO 189, CHEM 183, CHEMENG 183, CHEMENG 283)

Focus on metabolic biochemistry: the study of chemical reactions that provide the cell with the energy and raw materials necessary for life. Topics include glycolysis, gluconeogenesis, the citric acid cycle, oxidative phosphorylation, photosynthesis, the pentose phosphate pathway, and the metabolism of glycogen, fatty acids, amino acids, and nucleotides as well as the macromolecular machines that synthesize RNA, DNA, and proteins. Medical relevance is emphasized throughout. Satisfies Central Menu Area 1 for Bio majors. Prerequisite: BIO 188/288 or CHEM 181 or CHEMENG 181/281 (formerly 188/288).
Terms: Win | Units: 3
Instructors: Dunn, A. (PI)

BIO 290: Teaching of Biology

Open to upper-division undergraduates and graduate students. Practical experience in teaching lab biology or serving as an assistant in a lecture course. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints