2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
Browse
by subject...
    Schedule
view...
 

1 - 10 of 38 results for: MATH ; Currently searching spring courses. You can expand your search to include all quarters

MATH 20: Calculus

The definite integral, Riemann sums, antiderivatives, the Fundamental Theorem of Calculus, and the Mean Value Theorem for integrals. Integration by substitution and by parts. Area between curves, and volume by slices, washers, and shells. Initial-value problems, exponential and logistic models, direction fields, and parametric curves. Prerequisite: Math 19 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 21: Calculus

Review of limit rules. Sequences, functions, limits at infinity, and comparison of growth of functions. Review of integration rules, integrating rational functions, and improper integrals. Infinite series, special examples, convergence and divergence tests (limit comparison and alternating series tests). Power series and interval of convergence, Taylor polynomials, Taylor series and applications. Prerequisite: Math 20 or equivalent. If you have not previously taken a calculus course at Stanford then you must have taken the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr | Units: 4 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 51: Linear Algebra and Differential Calculus of Several Variables

Geometry and algebra of vectors, matrices and linear transformations, eigenvalues of symmetric matrices, vector-valued functions and functions of several variables, partial derivatives and gradients, derivative as a matrix, chain rule in several variables, critical points and Hessian, least-squares, , constrained and unconstrained optimization in several variables, Lagrange multipliers. Prerequisite: 21, 42, or the math placement diagnostic (offered through the Math Department website) in order to register for this course.
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 51A: Linear Algebra and Differential Calculus of Several Variables, ACE

Students attend MATH 51 lectures with different recitation sessions: four hours per week instead of two, emphasizing engineering applications. Prerequisite: application; see http://soe.stanford.edu/edp/programs/ace.html.
Terms: Aut, Win, Spr | Units: 6 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter (ABCD/NP)

MATH 52: Integral Calculus of Several Variables

Iterated integrals, line and surface integrals, vector analysis with applications to vector potentials and conservative vector fields, physical interpretations. Divergence theorem and the theorems of Green, Gauss, and Stokes. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 53: Ordinary Differential Equations with Linear Algebra

Ordinary differential equations and initial value problems, systems of linear differential equations with constant coefficients, applications of second-order equations to oscillations, matrix exponentials, Laplace transforms, stability of non-linear systems and phase plane analysis, numerical methods. Prerequisite: 51 or equivalents.
Terms: Aut, Win, Spr, Sum | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

MATH 63CM: Modern Mathematics: Continuous Methods

A proof-based course on ordinary differential equations, continuing themes from Math 61CM and Math 62CM. Topics include linear systems of differential equations and necessary tools from linear algebra, stability and asymptotic properties of solutions to linear systems, existence and uniqueness theorems for nonlinear differential equations with some applications to manifolds, behavior of solutions near an equilibrium point, and Sturm-Liouville theory. Prerequisites: Math 61CM and Math 62CM.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter (ABCD/NP)

MATH 63DM: Modern Mathematics: Discrete Methods

Third part of a proof-based sequence in discrete mathematics. This course covers several topics in probability (random variables, independence and correlation, concentration bounds, the central limit theorem) and topology (metric spaces, point-set topology, continuous maps, compactness, Brouwer's fixed point and the Borsuk-Ulam theorem), with some applications in combinatorics. Prerequisites: 61DM or 61CM
Terms: Spr | Units: 5 | Grading: Letter or Credit/No Credit

MATH 106: Functions of a Complex Variable

Complex numbers, analytic functions, Cauchy-Riemann equations, complex integration, Cauchy integral formula, residues, elementary conformal mappings. ( Math 116 offers a more theoretical treatment.) Prerequisite: 52.
Terms: Spr, Sum | Units: 3 | UG Reqs: GER:DB-Math | Grading: Letter or Credit/No Credit

MATH 109: Applied Group Theory

Applications of the theory of groups. Topics: elements of group theory, groups of symmetries, matrix groups, group actions, and applications to combinatorics and computing. Applications: rotational symmetry groups, the study of the Platonic solids, crystallographic groups and their applications in chemistry and physics. Honors math majors and students who intend to do graduate work in mathematics should take 120. WIM.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints