2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

121 - 130 of 187 results for: all courses

GEOPHYS 150: Geodynamics: Our Dynamic Earth (GEOPHYS 250)

What processes determine the large-scale structure and motion of Earth? How does convection deep within Earth drive plate tectonics and the formation of ocean basins and mountain ranges? Drawing from fundamental principles of mechanics and thermodynamics, we develop mathematical theories for heat flow, mantle convection, and the bending and breaking of Earth's brittle crust. Scaling arguments and dimensional analysis provide intuition that is refined through analytical and numerical solution (in MATLAB) of the governing equations and validated through comparison with observations. Prerequisites: differential equations ( CME 104 or MATH 53); mechanics and thermodynamics ( PHYSICS 41 and 45); prior programming experience ( CME 192 or CS 106A) is recommended.
Terms: offered occasionally | Units: 3-5 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

GEOPHYS 182: Reflection Seismology (GEOPHYS 222)

The principles of seismic reflection profiling, focusing on methods of seismic data acquisition and seismic data processing for hydrocarbon exploration.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

GES 50Q: The Coastal Zone Environment

Preference to sophomores. The oceanographic, geological, and biological character of coastal zone environments, including continental shelves, estuaries, and coastal wetlands, with emphasis on San Francisco Bay. Five required field trips examine estuarine and coastal environments, and agencies and facilities that manage these resources. Students present original research. Prerequisite: beginning course in Biology such as BIOSCI 51, Chemistry such as CHEM 30 or 31, Earth Sciences such as GES 1 or 2, or Earth Systems such as EARTHSYS 10.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter (ABCD/NP)

GS 1: Introduction to Geology (EARTHSYS 11)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Sperling, E. (PI)

GS 4: Coevolution of Earth and Life (EARTHSYS 4)

Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? Are we living in a sixth mass extinction? In this course, we will develop and use the tools of geology, paleontology, geochemistry, and modeling that allow us to reconstruct Earth¿s 4.5 billion year history and to reconstruct the interactions between life and its host planet over the past 4 billion years. We will also ask what this long history can tell us about life¿s likely future on Earth. We will also use One half-day field trip.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit

GS 8: Oceanography: An Introduction to the Marine Environment

For non-majors and earth science and environmental majors. Topics: topography and geology of the sea floor; evolution of ocean basins; circulation of ocean and atmosphere; nature of sea water, waves, and tides; and the history of the major ocean basins. The interface between continents and ocean basins, emphasizing estuaries, beaches, and continental shelves with California margin examples. Relationships among the distribution of inorganic constituents, ocean circulation, biologic productivity, and marine environments from deep sea to the coast. One-day field trip to measure and analyze waves and currents.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter or Credit/No Credit

GS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, ESS 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci | Grading: Letter (ABCD/NP)
Instructors: Dunbar, R. (PI)

GS 40N: Diamonds

Preference to freshmen. Topics include the history of diamonds as gemstones, prospecting and mining, and their often tragic politics. How diamond samples provide clues for geologists to understand the Earth's deep interior and the origins of the solar system. Diamond's unique materials properties and efforts in synthesizing diamonds.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Mao, W. (PI)

GS 55Q: The California Gold Rush: Geologic Background and Environmental Impact

Preference to sophomores. Topics include: geologic processes that led to the concentration of gold in the river gravels and rocks of the Mother Lode region of California; and environmental impact of the Gold Rush due to population increase, mining operations, and high concentrations of arsenic and mercury in sediments from hard rock mining and milling operations. Recommended: introductory geology.
Terms: not given this year | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA, Writing 2 | Grading: Letter or Credit/No Credit

GS 90: Introduction to Geochemistry (EARTHSYS 90)

The chemistry of the solid earth and its atmosphere and oceans, emphasizing the processes that control the distribution of the elements in the earth over geological time and at present, and on the conceptual and analytical tools needed to explore these questions. The basics of geochemical thermodynamics and isotope geochemistry. The formation of the elements, crust, atmosphere and oceans, global geochemical cycles, and the interaction of geochemistry, biological evolution, and climate. Recommended: introductory chemistry.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Stebbins, J. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints