2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

41 - 50 of 176 results for: BIO

BIO 116: Ecology of the Hawaiian Islands (EARTHSYS 116)

Terrestrial and marine ecology and conservation biology of the Hawaiian Archipelago. Taught in the field in Hawaii as part of quarter-long sequence of courses including Earth Sciences and Anthropology. Topics include ecological succession, plant-soil interactions, conservation biology, biological invasions and ecosystem consequences, and coral reef ecology. Restricted to students accepted into the Earth Systems of Hawaii Program.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci

BIO 117: Biology and Global Change (EARTHSYS 111, EESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 118: Genetic Analysis of Biological Processes

Focus is on using mutations and genetic analysis to study biological and medical questions. The first portion of the course covers how the identification and analysis of mutations can be used in model systems to investigate biological processes such as development and metabolism. In the second portion of the course, we focus on the use of existing genetic variation in humans and other species to identify disease-associated genes as well as to investigate variation in morphological traits such as body size and shape.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 121: Biogeography

Global distributions of organisms through the Phanerozoic, with emphasis on historical causes. Topics: plate tectonics, island biogeography, climatic change, dispersal, vicariance, ecology of invasions, extinction, gradients, diversity. Satisfies Central Menu Area 4.
Last offered: Spring 2009 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 126: Introduction to Biophysics (APPPHYS 205, BIO 226)

Core course appropriate for advanced undergraduate students and graduate students with prior knowledge of calculus and a college physics course. Introduction to how physical principles offer insights into modern biology, with regard to the structural, dynamical, and functional organization of biological systems. Topics include the roles of free energy, diffusion, electromotive forces, non-equilibrium dynamics, and information in fundamental biological processes.
Terms: Win | Units: 3-4

BIO 128: Geographic Impacts of Global Change: Mapping the Stories (EARTHSYS 129)

Forces of global change (eg., climate disruption, biodiversity loss, disease) impart wide-ranging political, socioeconomic, and ecological impacts, creating an urgent need for science communication. Students will collect data for a region of the US using sources ranging from academic journals to popular media and create an interactive Story Map ( http://stanford.maps.arcgis.com/apps/StorytellingTextLegend/index.html?appid=dafe2393fd2e4acc8b0a4e6e71d0b6d5) that merges the scientific and human dimensions of global change. Students will interview stakeholders as part of a community-engaged learning experience and present the Map to national policy-makers. Our 2014 Map is being used by the CA Office of Planning & Research.
Terms: Aut, Spr | Units: 4

BIO 129A: Cellular Dynamics I: Cell Motility and Adhesion

Cell motility emphasizing role of actin assembly and dynamics coupling actin organization to cell movement. Interaction of cells with extracellular matrix, and remodelling of extracellular matrix in development and disease. Directed cell migration by chemotaxis (neuronal path-finding, immune cells). Cell-cell adhesion, formation of intercellular junctions and mechanisms regulating cell-cell interactions in development and diseases. Emphasis is on experimental logic, methods, problem solving, and interpretation of results. Students present research papers. Satisfies Central Menu Area 2. Prerequisite: Biology core.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

BIO 129B: Cellular Dynamics II: Building a Cell

Principles of cell organization; how common biochemical pathways are modified to generate diversity in cell structure and function. Roles of actin and microtubule cytoskeletons in cellular architecture. Mechanisms of protein sorting and trafficking, and protein modules and switches in regulating cell polarity. Yeast to polarized epithelial cells and neurons. Emphasis is on experimental logic, methods, problem solving, and interpretation of results. Students present research papers. Satisfies Central Menu Area 2. Prerequisite: Biology core. Recommended: 129A.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci

BIO 131: Complex Systems Lab

Applications of complex systems will be explored in thisnseminar through lectures, discussions, and a class project. Lecture topicsninclude a discussion of chaos in weather modeling and aircraft turbulence,napplication of network science to understand Ebola and the ALS ice bucketnchallenge, and self-organized processes such as crowd dynamics andnWikipedia. The first half of the course will emphasize complex systemsnapplications. Students will apply complex systems analysis techniques tontheir personal research, a current event, or repeat a classic complexnsystems experiment. Projects can include topics such as calculating thenfractal dimension of a forest, simulating crowd dynamics, studying thendegree distribution of social networks, or making a Van der Pol oscillator.nGraduate student led seminar. Can be repeated for credit.
Terms: Win | Units: 1 | Repeatable for credit

BIO 132: Advanced Imaging Lab in Biophysics (APPPHYS 232, BIO 232, BIOPHYS 232, GENE 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, microendoscopy, and optical trapping. Limited enrollment. Recommended: basic physics, Biology core or equivalent, and consent of instructor.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints