2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 5 of 5 results for: OIT384

BIOE 374B: Biodesign Innovation: Concept Development and Implementation (ME 368B, MED 272B)

Two-quarter sequence (see OIT384 for complete description of the sequence). The second quarter focuses on how to take a conceptual solution to a medical need forward into development and potential commercialization. Continuing work in teams with engineering and medical colleagues, students will learn the fundamentals of medical device prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing a commercialization route (licensing vs. start-up); marketing, sales and distribution strategies; ethical issues including conflict of interest; fundraising approaches and cash requirements; financial modeling; essentials of developing a business or research plan/canvas; and strategies for assembling a development team. Final project presentations are made to a panel of prominent venture and corporate investors. New students (i.e. students who did not take OIT384 in the winter quarter) may be admitted, depending on team needs. Candidates need to submit an application at http://biodesign.stanford.edu/bdn/courses/bioe374app.jsp by March 1.
Terms: Spr | Units: 4

ME 368B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, MED 272B)

Two-quarter sequence (see OIT384 for complete description of the sequence). The second quarter focuses on how to take a conceptual solution to a medical need forward into development and potential commercialization. Continuing work in teams with engineering and medical colleagues, students will learn the fundamentals of medical device prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing a commercialization route (licensing vs. start-up); marketing, sales and distribution strategies; ethical issues including conflict of interest; fundraising approaches and cash requirements; financial modeling; essentials of developing a business or research plan/canvas; and strategies for assembling a development team. Final project presentations are made to a panel of prominent venture and corporate investors. New students (i.e. students who did not take OIT384 in the winter quarter) may be admitted, depending on team needs. Candidates need to submit an application at http://biodesign.stanford.edu/bdn/courses/bioe374app.jsp by March 1.
Terms: Spr | Units: 4

MED 272B: Biodesign Innovation: Concept Development and Implementation (BIOE 374B, ME 368B)

Two-quarter sequence (see OIT384 for complete description of the sequence). The second quarter focuses on how to take a conceptual solution to a medical need forward into development and potential commercialization. Continuing work in teams with engineering and medical colleagues, students will learn the fundamentals of medical device prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing a commercialization route (licensing vs. start-up); marketing, sales and distribution strategies; ethical issues including conflict of interest; fundraising approaches and cash requirements; financial modeling; essentials of developing a business or research plan/canvas; and strategies for assembling a development team. Final project presentations are made to a panel of prominent venture and corporate investors. New students (i.e. students who did not take OIT384 in the winter quarter) may be admitted, depending on team needs. Candidates need to submit an application at http://biodesign.stanford.edu/bdn/courses/bioe374app.jsp by March 1.
Terms: Spr | Units: 4

OIT 384: Biodesign Innovation: Needs Finding and Concept Creation

This is the first quarter of a two-quarter course series ( OIT 384/ OIT 385). In this course, students learn how to develop comprehensive solutions (most commonly medical devices) to some of the most significant medical problems. The first quarter includes an introduction to needs finding methods, brainstorming and concept creation. Students learn strategies for understanding and interpreting clinical needs, researching literature and searching patents. Working in small entrepreneurial multidisciplinary teams, students gain exposure to clinical and scientific literature review, techniques of intellectual property analysis and feasibility, basic prototyping and market assessment. Students create, analyze and screen medical technology ideas, and select projects for future development. Final presentations at the end of the winter quarter to a panel of prominent inventors and investors in medical technology provide the impetus for further work in the spring quarter. Course format includes expert guest lecturers (Thu: 4:15 to 6:05 pm), faculty-led practical demonstrations and coaching sessions, and interactive team meetings (Tues: 4:15 to 6:05 pm). Projects from previous years included: prevention of hip fractures in the elderly; methods to accelerate healing after surgery; less invasive techniques for bariatric surgery; point of care diagnostics to improve emergency room efficiency; novel devices to bring specialty-type of care to primary care community doctors. More than 300,000 patients have been treated to date with technologies developed as part of this program and more than thirty venture-backed companies were started by alums of the program. Students must apply and be accepted into the course. The application is available online at http://biodesign.stanford.edu/bdn/courses/bioe374.jsp.
Terms: Win | Units: 4

OIT 385: Biodesign Innovation: Concept Development and Implementation

Two-quarter sequence (see OIT384 for complete description of the sequence). The second quarter focuses on how to take a conceptual solution to a medical need forward into development and potential commercialization. Continuing work in teams with engineering and medical colleagues, students will learn the fundamentals of medical device prototyping; patent strategies; advanced planning for reimbursement and FDA approval; choosing a commercialization route (licensing vs. start-up); marketing, sales and distribution strategies; ethical issues including conflict of interest; fundraising approaches and cash requirements; financial modeling; essentials of developing a business or research plan/canvas; and strategies for assembling a development team. Final project presentations are made to a panel of prominent venture and corporate investors. New students (i.e. students who did not take OIT384 in the winter quarter) may be admitted, depending on team needs. Candidates need to submit an application at http://biodesign.stanford.edu/bdn/courses/bioe374app.jsp by March 1.
Terms: Spr | Units: 4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints