2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

3301 - 3310 of 9648 results for: ...

EE 290A: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, candidacy for Engineer or Ph.D. in Electrical Engineering; for 290C, candidacy for Ph.D. degree in Electrical Engineering; for 290D, consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: Wong, S. (PI)

EE 290B: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, candidacy for Engineer or Ph.D. in Electrical Engineering; for 290C, candidacy for Ph.D. degree in Electrical Engineering; for 290D, consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: Wong, S. (PI)

EE 290C: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, candidacy for Engineer or Ph.D. in Electrical Engineering; for 290C, candidacy for Ph.D. degree in Electrical Engineering; for 290D, consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: Wong, S. (PI)

EE 290D: Curricular Practical Training for Electrical Engineers

For EE majors who need work experience as part of their program of study. Final report required. Prerequisites: for 290B, candidacy for Engineer or Ph.D. in Electrical Engineering; for 290C, candidacy for Ph.D. degree in Electrical Engineering; for 290D, consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1
Instructors: Wong, S. (PI)

EE 293A: Fundamentals of Energy Processes (ENERGY 293A)

For seniors and graduate students. Thermodynamics, heat engines, thermoelectics, biomass. Recommended: MATH 41, 43; PHYSICS 41, 43, 45
Last offered: Autumn 2008

EE 293B: Fundamentals of Energy Processes (ENERGY 293B)

For seniors and graduate students. Fuel cells. Production of hydrogen: electrolytic, chemical, thermolytic, photolytic. Hydrogen storage: hydrides. Photoelectric converters; photo-thermovoltaic converters. Wind turbines. Recommended: EE 293A; MATH 41; PHYSICS 41, 43, 45
Terms: Win | Units: 3
Instructors: DaRosa, A. (PI)

EE 300: Master's Thesis and Thesis Research

Independent work under the direction of a department faculty. Written thesis required for final letter grade. The continuing grade 'N' is given in quarters prior to thesis submission. See 390 if a letter grade is not appropriate.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit
Instructors: Aghajan, H. (PI) ; Allison, D. (PI) ; Apostolopoulos, J. (PI) ; Bahai, A. (PI) ; Baker, M. (PI) ; Bambos, N. (PI) ; Beasley, M. (PI) ; Binford, T. (PI) ; Boneh, D. (PI) ; Bosi, M. (PI) ; Boyd, S. (PI) ; Bravman, J. (PI) ; Bube, R. (PI) ; Byer, R. (PI) ; Cheriton, D. (PI) ; Chidsey, C. (PI) ; Cioffi, J. (PI) ; Cover, T. (PI) ; Cox, D. (PI) ; DaRosa, A. (PI) ; Dally, B. (PI) ; Dasher, R. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dutton, R. (PI) ; El Gamal, A. (PI) ; Emami-Naeini, A. (PI) ; Enge, P. (PI) ; Engler, D. (PI) ; Eshleman, V. (PI) ; Fan, S. (PI) ; Flynn, M. (PI) ; Franklin, G. (PI) ; Fraser-Smith, A. (PI) ; Garcia-Molina, H. (PI) ; Gibbons, F. (PI) ; Gibbons, J. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Glover, G. (PI) ; Goldsmith, A. (PI) ; Goodman, J. (PI) ; Gorinevsky, D. (PI) ; Gray, R. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Harris, J. (PI) ; Harris, S. (PI) ; Hashemi, H. (PI) ; Heeger, D. (PI) ; Helliwell, R. (PI) ; Hennessy, J. (PI) ; Hesselink, L. (PI) ; Horowitz, M. (PI) ; Howe, R. (PI) ; Inan, U. (PI) ; Kahn, J. (PI) ; Kailath, T. (PI) ; Kazovsky, L. (PI) ; Khuri-Yakub, B. (PI) ; Kiehl, R. (PI) ; Kim, B. (PI) ; Kino, G. (PI) ; Kovacs, G. (PI) ; Koza, J. (PI) ; Kozyrakis, C. (PI) ; Lall, S. (PI) ; Lam, M. (PI) ; Lee, T. (PI) ; Leeson, D. (PI) ; Levis, P. (PI) ; Levoy, M. (PI) ; Linscott, I. (PI) ; Long, E. (PI) ; Luckham, D. (PI) ; Macovski, A. (PI) ; Manoharan, H. (PI) ; Marcus, B. (PI) ; McCluskey, E. (PI) ; McKeown, N. (PI) ; Melen, R. (PI) ; Meng, T. (PI) ; Miller, D. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Montanari, A. (PI) ; Murmann, B. (PI) ; Napel, S. (PI) ; Narasimha, M. (PI) ; Ng, A. (PI) ; Nishi, Y. (PI) ; Nishimura, D. (PI) ; Olukotun, O. (PI) ; Osgood, B. (PI) ; Paulraj, A. (PI) ; Pauly, J. (PI) ; Pease, R. (PI) ; Pelc, N. (PI) ; Peumans, P. (PI) ; Pianetta, P. (PI) ; Plummer, J. (PI) ; Popelka, G. (PI) ; Powell, J. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Quate, C. (PI) ; Reis, R. (PI) ; Rosenblum, M. (PI) ; Saraswat, K. (PI) ; Saxena, N. (PI) ; Shahidi, R. (PI) ; Shaw, H. (PI) ; Shen, Z. (PI) ; Shenoy, K. (PI) ; Siegel, M. (PI) ; Siegman, A. (PI) ; Smith, J. (PI) ; Solgaard, O. (PI) ; Solomon, G. (PI) ; Spielman, D. (PI) ; Stinson, J. (PI) ; Thompson, N. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Tomlin, C. (PI) ; Tyler, G. (PI) ; Ullman, J. (PI) ; Van Roy, B. (PI) ; Vishnu, M. (PI) ; Vuckovic, J. (PI) ; Wakerly, J. (PI) ; Walt, M. (PI) ; Wandell, B. (PI) ; Wang, S. (PI) ; Weissman, T. (PI) ; Wenstrand, J. (PI) ; White, R. (PI) ; Widom, J. (PI) ; Widrow, B. (PI) ; Wiederhold, G. (PI) ; Wong, H. (PI) ; Wong, S. (PI) ; Wooley, B. (PI) ; Yamamoto, Y. (PI) ; Zebker, H. (PI)

EE 302: Biomedical Electronics

Terms: Win | Units: 3
Instructors: Poon, A. (PI)

EE 303: Autonomous Implantable Systems

How implantable systems can revolutionize health care in the coming decades. Potential applications include implantable sensors and monitoring devices for preventive and post-surgery monitoring; drug delivery systems that can be placed closer to cancer cells and are able to administer dosage automatically; medical robots that perform surgery inside patients with greater precision and less pain; and neural implants for brain-machine interface. Focus is on the analysis and design of remotely-powered, miniature implantable devices for those applications.
Terms: Spr | Units: 3
Instructors: Poon, A. (PI)

EE 309: Semiconductor Memory Devices and Technology

Memory devices: SRAM, DRAM, NVRAM (non-volatile memory). Functionality and performance of ULSI systems. Semiconductor memories, device design considerations, device scaling, device fabrication, addressing, and readout circuits. Cell structures (1T-1C, 6T, 4T, 1T-1R, 0T-1R, floating gate FLASH, SONOS, NROM), and memory organization (open bit-line, folded bit-line, NAND, NOR, cross-point). New memory concepts such as nanocrystal memory, single-electron memory, magnetic tunnel junction memory (MRAM), ferroelectric memory (FRAM), phase change memory (PRAM), T-RAM, polymer memory, metal oxide memory, nanoconductive bridge memory). Prerequisite: 216. Recommended: 212, 311, 316.
Terms: Aut | Units: 3
Instructors: Wong, H. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints