2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 20 results for: AA ; Currently searching winter courses. You can expand your search to include all quarters

AA 108N: Surviving Space

Space is dangerous. Anything we put into orbit has to survive the intense forces experienced during launch, extreme temperature changes, impacts by cosmic rays and energetic protons and electrons, as well as hits by human-made orbital debris and meteoroids. If we venture beyond Earth's sphere of influence, we must also then endure the extreme plasma environment without the protection of our magnetic field. With all of these potential hazards, it is remarkable that our space program has experienced so few catastrophic failures. In this seminar, students will learn how engineers design and test spacecraft to ensure survivability in this harsh space environment. We will explore three different space environment scenarios, including a small satellite that must survive in Low Earth Orbit (LEO), a large spacecraft headed to rendezvous with an asteroid, and a human spaceflight mission to Mars.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: Close, S. (PI)

AA 115N: The Global Positioning System: Where on Earth are We, and What Time is It?

Preference to freshmen. Why people want to know where they are: answers include cross-Pacific trips of Polynesians, missile guidance, and distraught callers. How people determine where they are: navigation technology from dead-reckoning, sextants, and satellite navigation (GPS). Hands-on experience. How GPS works; when it does not work; possibilities for improving performance.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR | Grading: Letter (ABCD/NP)
Instructors: Enge, P. (PI)

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit | Grading: Letter (ABCD/NP)

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

AA 200: Applied Aerodynamics

Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Kroo, I. (PI)

AA 214B: Numerical Methods for Compressible Flows

For M.S.-level graduate students. Covers the hierarchy of mathematical models for compressible flows. Introduction to finite difference, finite volume, and finite element methods for their computation. Ideal potential flow; transonic potential flow; Euler equations; Navier-Stokes equations; representative model problems; shocks, expansions, and contact discontinuities; treatment of boundary conditions; time and pseudo-time integration schemes. Prerequisites: basic knowledge of linear algebra and ODEs ( CME 206 or equivalent).
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Farhat, C. (PI)

AA 229: Advanced Topics in Sequential Decision Making (CS 239)

Survey of recent research advances in intelligent decision making for dynamic environments from a computational perspective. Efficient algorithms for single and multiagent planning in situations where a model of the environment may or may not be known. Partially observable Markov decision processes, approximate dynamic programming, and reinforcement learning. New approaches for overcoming challenges in generalization from experience, exploration of the environment, and model representation so that these methods can scale to real problems in a variety of domains including aerospace, air traffic control, and robotics. Students are expected to produce an original research paper on a relevant topic. Prerequisites: AA 228/ CS 238 or CS 221.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit

AA 240B: Analysis of Structures

Thin plate analysis. Structural stability. Material behavior: plasticity and fracture. Introduction of finite element analysis; truss, frame, and plate structures. Prerequisite: 240A or consent of instructor.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Senesky, D. (PI)

AA 256: Mechanics of Composites

Fiber reinforced composites. Stress, strain, and strength of composite laminates and honeycomb structures. Failure modes and failure criteria. Environmental effects. Manufacturing processes. Design of composite structures. Individual design project required of each student, resulting in a usable computer software. Prerequisite: ENGR 14 or equivalent.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Chang, F. (PI)

AA 274: Principles of Robotic Autonomy

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisite: CS 106A or equivalent.
Terms: Win | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Pavone, M. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints