2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
by subject...

1 - 10 of 12 results for: APPPHYS

APPPHYS 201: Electrons and Photons (PHOTON 201)

Applied Physics Core course appropriate for graduate students and advanced undergraduate students with prior knowledge of elementary quantum mechanics, electricity and magnetism, and special relativity. Interaction of electrons with intense electromagnetic fields from microwaves to x- ray, including electron accelerators, x-ray lasers and synchrotron light sources, attosecond laser-atom interactions, and x-ray matter interactions. Mechanisms of radiation, free-electron lasing, and advanced techniques for generating ultrashort brilliant pulses. Characterization of electronic properties of advanced materials, prospects for single-molecule structure determination using x-ray lasers, and imaging attosecond molecular dynamics.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 208: Laboratory Electronics

Lecture/lab emphasizing analog and digital electronics for lab research. Continuation of APPPHYS 207 with emphasis on applications of digital techniques. Combinatorial and synchronous digital circuits. Design using programmable logic. Analog/digital conversion. Microprocessors and real time programming, concepts and methods of digital signal processing techniques. Current lab interface protocols. Techniques commonly used for lab measurements. Development of student lab projects during the last three weeks. Prerequisites: undergraduate device and circuit exposure. Recommended: previous enrollment in APPPHYS 207.
Terms: Spr, alternate years, not given next year | Units: 4 | Grading: Letter (ABCD/NP)
Instructors: Fox, J. (PI)

APPPHYS 222: Principles of X-ray Scattering (PHOTON 222)

Provides a fundamental understanding of x-ray scattering and diffraction. Combines pedagogy with modern experimental methods for obtaining atomic-scale structural information on synchrotron and free-electon laser-based facilities. Topics include Fourier transforms, reciprocal space; scattering in the first Born approximation, comparison of x-ray, neutron and electron interactions with matter, kinematic theory of diffraction; dynamical theory of diffraction from perfect crystals, crystal optics, diffuse scattering from imperfect crystals, inelastic x-ray scattering in time and space, x-ray photon correlation spectroscopy. Laboratory experiments at the Stanford Synchrotron Radiation Lightsource.
Terms: Spr, alternate years, not given next year | Units: 4 | Grading: Letter or Credit/No Credit

APPPHYS 232: Advanced Imaging Lab in Biophysics (BIO 132, BIO 232, BIOPHYS 232, GENE 232)

Laboratory and lectures. Advanced microscopy and imaging, emphasizing hands-on experience with state-of-the-art techniques. Students construct and operate working apparatus. Topics include microscope optics, Koehler illumination, contrast-generating mechanisms (bright/dark field, fluorescence, phase contrast, differential interference contrast), and resolution limits. Laboratory topics vary by year, but include single-molecule fluorescence, fluorescence resonance energy transfer, confocal microscopy, two-photon microscopy, microendoscopy, and optical trapping. Limited enrollment. Recommended: basic physics, Biology core or equivalent, and consent of instructor.
Terms: Spr | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

APPPHYS 272: Solid State Physics (PHYSICS 172)

Introduction to the properties of solids. Crystal structures and bonding in materials. Momentum-space analysis and diffraction probes. Lattice dynamics, phonon theory and measurements, thermal properties. Electronic structure theory, classical and quantum; free, nearly-free, and tight-binding limits. Electron dynamics and basic transport properties; quantum oscillations. Properties and applications of semiconductors. Reduced-dimensional systems. Undergraduates should register for PHYSICS 172 and graduate students for APPPHYS 272. Prerequisites: PHYSICS 170 and PHYSICS 171, or equivalents.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 290: Directed Studies in Applied Physics

Special studies under the direction of a faculty member for which academic credit may properly be allowed. May include lab work or directed reading.
Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 293: Theoretical Neuroscience (PSYCH 242)

Survey of advances in the theory of neural networks, mainly (but not solely) focused on results of relevance to theoretical neuroscience.Synthesizing a variety of recent advances that potentially constitute the outlines of a theory for understanding when a given neural network architecture will work well on various classes of modern recognition and classification tasks, both from a representational expressivity and a learning efficiency point of view. Discussion of results in the neurally-plausible approximation of back propagation, theory of spiking neural networks, the relationship between network and task dimensionality, and network state coarse-graining. Exploration of estimation theory for various typical methods of mapping neural network models to neuroscience data, surveying and analyzing recent approaches from both sensory and motor areas in a variety of species. Prerequisites: calculus, linear algebra, and basic probability theory, or consent of instructor.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

APPPHYS 294: Cellular Biophysics (BIO 294, BIOPHYS 294)

Physical biology of dynamical and mechanical processes in cells. Emphasis is on qualitative understanding of biological functions through quantitative analysis and simple mathematical models. Sensory transduction, signaling, adaptation, switches, molecular motors, actin and microtubules, motility, and circadian clocks. Prerequisites: differential equations and introductory statistical mechanics.
Terms: Spr, alternate years, not given next year | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fisher, D. (PI)

APPPHYS 390: Dissertation Research

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit | Grading: Satisfactory/No Credit

APPPHYS 470: Condensed Matter Seminar

Current research and literature; offered by faculty, students, and outside specialists. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable for credit | Grading: Satisfactory/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints