2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
by subject...

1 - 10 of 25 results for: AA ; Currently searching spring courses. You can expand your search to include all quarters

AA 121Q: It IS Rocket Science!

It's an exciting time for space exploration. Companies like SpaceX and Blue Origin are launching rockets into space and bringing them back for reuse. NASA is developing the world's most powerful rocket. Startups are deploying constellations of hundreds of cubesats for communications, navigation, and earth monitoring. The human race has recently gotten a close look at Pluto, soft landed on a comet, and orbited two asteroids. The upcoming launch of the James Webb Space Telescope will allow astronomers to look closer to the beginning of time than ever before. The workings of space systems remain mysterious to most people, but in this seminar we'll pull back the curtain for a look at the basics of "rocket science." How does a SpaceX rocket get into space? How do Skybox satellites capture images for Google Earth? How did the New Horizons probe find its way to Pluto? How do we communicate with spacecraft that are so distant? We'll explore these topics and a range of others during the quarter. We'll cover just enough physics and math to determine where to look in the sky for a spacecraft, planet, or star. Then we'll check our math by going outside for an evening pizza party observing these objects in the night sky. We'll also visit a spacecraft production facility or Mission Operations Center to see theory put into practice.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Barrows, A. (PI)

AA 122N: Dawn of the Drones: How Will Unmanned Aerial Systems Change Our World?

Unmanned aerial systems (UASs) have exploded on the scene in recent years, igniting a national debate about how to use them, how to regulate them, and how to make them safe. This seminar will dive into the many engineering challenges behind the headlines: in the future, how will we engineer UASs ranging in size from simple RC toys to highly-sophisticated autonomous scientific and military data gathering systems? This seminar will examine the key elements required to conceive, implement, deploy, and operate state-of-the-art of drone systems: What variety of problems can they help us solve? How autonomous are they and how autonomous do they need to be? What are the key technical bottlenecks preventing widespread deployment? How are they different from commercial aircraft? What kinds of companies will serve the market for UAV-related products and services? What business models will be successful and why? We will emphasize aspects of design, autonomy, reliability, navigation, sensing, and perception, as well as coordination/collaboration through a series of case studies drawn from our recent experience. Examples include imaging efforts to map the changing coral reefs in the South Pacific, using and controlling swarms of unmanned systems to perform search and rescue missions over large areas, and package delivery systems over large metropolitan areas. Hands-on experience with Stanford-developed UASs will be part of the seminar.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

AA 190: Directed Research and Writing in Aero/Astro

For undergraduates. Experimental or theoretical work under faculty direction, and emphasizing development of research and communication skills. Written report(s) and letter grade required; if this is not appropriate, enroll in 199. Consult faculty in area of interest for appropriate topics, involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of student services manager and instructor.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | Repeatable for credit | Grading: Letter (ABCD/NP)

AA 199: Independent Study in Aero/Astro

Directed reading, lab, or theoretical work for undergraduate students. Consult faculty in area of interest for appropriate topics involving one of the graduate research groups or other special projects. May be repeated for credit. Prerequisite: consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

AA 203: Introduction to Optimal Control and Dynamic Optimization

Basic solution techniques for optimal control and dynamic optimization problems. Dynamic programming, calculus of variations, and numerical techniques for trajectory optimization. Special cases (chiefly LQR and robotic motion planning); modern solution approaches (such as MPC and MILP); and introduction to stochastic optimal control. Examples in MATLAB and CVX.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Pavone, M. (PI)

AA 214C: Numerical Computation of Viscous Flow

Numerical methods for solving parabolic sets of partial differential equations. Numerical approximation of the equations describing compressible viscous flow with adiabatic, isothermal, slip, and no-slip wall boundary conditions. Applications to the Navier-Stokes equations in two and three dimensions at high Reynolds number. Computational problems are assigned. Prerequisite: 214B.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Jameson, A. (PI)

AA 218: Introduction to Symmetry Analysis

Methods of symmetry analysis and their use in the reduction and simplification of physical problems. Topics: dimensional analysis, phase-space analysis of autonomous systems of ordinary differential equations, use of Lie groups to reduce the order of nonlinear ODEs and to generate integrating factors, use of Lie groups to reduce the dimension of partial differential equations and to generate similarity variables, exact solutions of nonlinear PDEs generated from groups. Mathematica-based software developed by the instructor is used for finding invariant groups of ODEs and PDEs.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Cantwell, B. (PI)

AA 222: Introduction to Multidisciplinary Design Optimization (CS 361)

Design of engineering systems within a formal optimization framework. Engineering often involves the synthesis of several disciplines, such as fluids, structures, and controls in aerospace systems. These disciplines interact in complex ways, making the optimization of the system design challenging. This course covers the mathematical and algorithmic fundamentals of optimization, including derivative and derivative-free approaches for both linear and non-linear problems, with an emphasis on multidisciplinary design optimization. Topics will also include quantitative methodologies for addressing various challenges, such as accommodating multiple objectives, handling uncertainty in evaluations, selecting design points for experimentation, and principled methods for optimization when evaluations are expensive. Applications range from the design of aircraft to automated vehicles. Prerequisites: some familiarity with probability, programming, and multivariable calculus.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

AA 236C: Spacecraft Design Laboratory

Terms: Spr | Units: 3-5 | Grading: Letter (ABCD/NP)
Instructors: Kalman, A. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints