2013-2014 2014-2015 2015-2016 2016-2017 2017-2018
Browse
by subject...
    Schedule
view...
 

1 - 10 of 34 results for: MATSCI

MATSCI 82N: Science of the Impossible

Imagine a world where cancer is cured with light, objects can be made invisible, and teleportation is allowed through space and time. The future once envisioned by science fiction writers is now becoming a reality, thanks to advances in materials science and engineering. This seminar will explore 'impossible' technologies - those that have shaped our past and those that promise to revolutionize the future. Attention will be given to both the science and the societal impact of these technologies. We will begin by investigating breakthroughs from the 20th century that seemed impossible in the early 1900s, such as the invention of integrated circuits and the discovery of chemotherapy. We will then discuss the scientific breakthroughs that enabled modern 'impossible' science, such as photodynamic cancer therapeutics, invisibility, and psychokinesis through advanced mind-machine interfaces. Lastly, we will explore technologies currently perceived as completely impossible and brainstorm the breakthroughs needed to make such science fiction a reality. The course will include introductory lectures and in-depth conversations based on readings. Students will also be given the opportunity to lead class discussions on a relevant 'impossible science' topic of their choosing.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Dionne, J. (PI)

MATSCI 100: Undergraduate Independent Study

Independent study in materials science under supervision of a faculty member.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit | Grading: Letter or Credit/No Credit

MATSCI 142: Quantum Mechanics of Nanoscale Materials

Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power. Prerequisites: ENGR 50 or equivalent introductory materials science course.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Chueh, W. (PI)

MATSCI 150: Undergraduate Research

Participation in a research project.
Terms: Aut, Win, Spr, Sum | Units: 3-6 | Repeatable for credit | Grading: Satisfactory/No Credit

MATSCI 159Q: Japanese Companies and Japanese Society (ENGR 159Q)

Preference to sophomores. The structure of a Japanese company from the point of view of Japanese society. Visiting researchers from Japanese companies give presentations on their research enterprise. The Japanese research ethic. The home campus equivalent of a Kyoto SCTI course.
Terms: Spr | Units: 3 | UG Reqs: GER:DB-SocSci | Grading: Letter (ABCD/NP)
Instructors: Sinclair, R. (PI)

MATSCI 160: Nanomaterials Laboratory

Preference to sophomores and juniors. Hands-on approach to synthesis and characterization of nanoscale materials. How to make, pattern, and analyze the latest nanotech materials, including nanoparticles, nanowires, and self-assembled monolayers. Techniques such as soft lithography, self-assembly, and surface functionalization. The VLS mechanism of nanowire growth, nanoparticle size control, self-assembly mechanisms, and surface energy considerations. Laboratory projects. Enrollment limited to 24.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit
Instructors: Brock, R. (PI)

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units. Prerequisites: MATSCI 145 or equivalent coursework in thermodynamics.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Reed, E. (PI)

MATSCI 175: Nanoscale Materials Physics Computation Laboratory (MATSCI 165)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Required prerequisites: Freshman-level physics, undergraduate thermodynamics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units. Prerequisites: MATSCI 145 or equivalent coursework in thermodynamics.
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)
Instructors: Reed, E. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints